

Общество с ограниченной ответственностью «Торговый дом «АЭфТ» (ООО «ТД «АЭфТ»)

комплекс измерительно-вычислительный АЭФТ-ЭКОСТОК

Исполнения ЭКОСТОК-11.1, ЭКОСТОК -11.2, ЭКОСТОК -11.3, ЭКОСТОК-12.1, ЭКОСТОК -12.2, ЭКОСТОК -12.3

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

401250-001-0366621-17.1 P3

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
ГАРАНТИИ ИЗГОТОВИТЕЛЯ	4
1. ОПИСАНИЕ	. 5
1.1. Назначение	5
1.2. Технические характеристики	5
1.3. Метрологические характеристики	
1.4. Принцип работы	
1.5. Входящие устройства	
1.5.1. Преобразователь расхода	
1.6. Комплект поставки	
1.7. Маркировка и пломбирование	
1.8. Упаковка, хранение и транспортирование	
2. ПОРЯДОК РАБОТЫ	
2.1 Режимы работы	
2.2. Регистрация результатов работы	
2.3. Внешние связи	
2.4. Просмотр записей в архивах и журналах	13
2.5 Управление комплексом	13
2.5.1. Управление комплексом с блока ИВК-ТЭР	
2.5.2. Ввод команд и значений установочных параметров	
2.5.3. Настройка комплекса	
3. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	
3.1. Эксплуатационные ограничения	
3.2. Меры безопасности	
·	
4. ТРЕБОВАНИЯ И ПОРЯДОК МОНТАЖА	
4.1. Общие правила4.2. Требования по монтажу преобразователя расхода комплекса	
4.3. Порядок монтажа преобразователя расхода комплекса	
4.4. Требования по монтажу устройства измерительно-вычислительного	
4.5. Порядок и правила электромонтажа	
4.6. Подготовка к вводу в эксплуатацию	
4.7. Демонтаж расходомера	
5. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	
6. ПОВЕРКА КОМПЛЕКСА	
ПРИЛОЖЕНИЕ А. Расходомер «ВЗЛЕТ ТЭР»	
ПРИЛОЖЕНИЕ Б. Устройства измерительно-вычислительные	
ПРИЛОЖЕНИЕ В. Размеры сборки расходомера «ВЗЛЕТ ТЭР» с подающим и	0
отводящим патрубками	
ПРИЛОЖЕНИЕ Г. Система меню и окон индикации блока ИВК-ТЭР	
исполнений ЭКОСТОК-11.1 и ЭКОСТОК-12.1 комплекса	
ПРИЛОЖЕНИЕ Д. Методика поверки МП 0597-1-2017	41

Настоящий документ распространяется на комплексы измерительно-вычислительные «АЭФТ-ЭКОСТОК» исполнений ЭКОСТОК-11.1, ЭКОСТОК -11.2, ЭКОСТОК -11.3, ЭКОСТОК-12.1, ЭКОСТОК -12.2, ЭКОСТОК -12.3 и предназначен для ознакомления с устройством комплекса и порядком его эксплуатации.

В связи с проводимой работой по усовершенствованию комплексов в изделии возможны отличия от настоящего руководства, не влияющие на метрологические характеристики и функциональные возможности комплекса.

ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ

ПР - преобразователь расхода

УИВ - устройство измерительно-вычислительное

ПРИМЕЧАНИЕ. Вид наименования или обозначения, выполненного в тексте или таблицах жирным шрифтом, например, **Расход**, соответствует его отображению на дисплее прибора.

_____ * ____

• Комплексы измерительно-вычислительные «АЭФТ-ЭКОСТОК» зарегистрированы в Государственном реестре средств измерений РФ под № 68933-17 (свидетельство об утверждении типа средств измерений RU.C.29.592.A № 67557)

ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- I. Изготовитель гарантирует соответствие комплекса техническим условиям 401250-001-03466621-16 ТУ в пределах гарантийного срока 12 месяцев с даты первичной поверки при соблюдении правил хранения, транспортирования, монтажа и эксплуатации комплекса и входящих в его состав устройств в соответствии с эксплуатационной документацией на комплекс и входящие устройства.
- II. Гарантийные сроки на устройства, входящие в состав изделия, указаны в эксплуатационной документации на входящие устройства.
 - III. Изготовитель не несет гарантийных обязательств в следующих случаях:
- а) отсутствует паспорт на изделие с заполненным разделом «Свидетельство о приемке»;
 - б) отсутствует паспорт на входящее устройство с отметкой о приемке;
- в) составные части комплекса или входящие устройства хранились, транспортировались, монтировались или эксплуатировались с нарушением требований эксплуатационной документации на комплекс и входящие устройства;
- г) составная часть комплекса или входящее устройство имеет механическое повреждение;
- д) отсутствует или повреждена пломба с оттиском клейма поверителя или пломба корпуса блока электроники входящего устройства;
 - е) входящее устройство подвергалось разборке или доработке;
 - ж) производилось вскрытие корпуса блока электроники входящего устройства.

* * *

Неисправное изделие для выполнения гарантийного ремонта направляется изготовителю.

1. ОПИСАНИЕ

1.1. Назначение

- 1.1.1. Комплексы измерительно-вычислительные «АЭФТ-ЭКОСТОК» исполнений ЭКОСТОК-11.1, ЭКОСТОК -11.2, ЭКОСТОК -11.3, ЭКОСТОК-12.1, ЭКОСТОК -12.2, ЭКОСТОК -12.3 предназначены для измерения объемного расхода и объема безнапорного потока жидких сред (воды, стоков, пульпы, шлама и т.п.) с помощью преобразователя расхода полнопроходного электромагнитного расходомера.
 - 1.1.2. Комплекс «АЭФТ-ЭКОСТОК» обеспечивает:
 - измерение среднего объемного расхода;
 - определение объема нарастающим итогом;
 - индикацию результатов измерений на встроенном дисплее;
- архивирование в энергонезависимой памяти результатов измерений, а также хранение установочных параметров;
- автоматический контроль и индикацию наличия неисправностей комплекса и нештатных состояний преобразователя расхода;
- вывод диагностической, установочной, архивной и другой информации по цифровым интерфейсам;
 - защиту архивных и установочных данных от несанкционированного доступа.

1.2. Технические характеристики

- 1.2.1. Диаметр условного прохода DN (мм) преобразователей расхода комплекса от DN32 до DN300.
- 1.2.2. Диапазон измерений расхода комплекса от 0,001 $Q_{\text{наиб}}$ до $Q_{\text{наиб}}$. Значения $Q_{\text{наиб}}$ приведены в табл.1.

Таблица 1

DN, мм	32	40	50	65	80	100	150	200	300
Q _{наиб} , м ³ /ч	29	45,3	70,8	119,6	181,1	283,0	636,8	1132	2547

- 1.2.3. Температура контролируемой жидкости от минус 5 до 70 °C или от минус 10 до 150 °C в зависимости от материала футеровки расходомера.
- 1.2.4. Комплекс обеспечивает хранение результатов работы в часовом, суточном и месячном электронных архивах.

Срок сохранности архивной и установочной информации при отключении внешнего питания не менее 1 года.

1.2.5. Электропитание входящих устройств комплекса осуществляется стабилизированным напряжением постоянного тока от 22 до 26 B с уровнем пульсаций не более \pm 1,0 %. Электропитание тепловычислителя СПТ941 осуществляется стабилизированным напряжением постоянного тока от 9 до 15 B.

Потребляемая мощность – не более 20 Вт.

- 1.2.6. Эксплуатационные параметры:
- средняя наработка на отказ 75 000 ч;
- средний срок службы 12 лет.
- 1.2.7. Преобразователь расхода (ПР) комплекса соответствует требованиям ГОСТ Р 52931 по устойчивости:
- к климатическим воздействиям группе исполнения С1 (диапазон температуры окружающего воздуха от минус 25 до 55 °C, относительная влажность до 100 % при температуре до 30 °C, с конденсацией влаги);
 - к механическим воздействиям группе исполнения N2;

- к атмосферному давлению – группе исполнения Р2.

Степень защиты ПР исполнений комплекса ЭКОСТОК -11.1, ЭКОСТОК -11.2, Экосток-11.3 соответствует коду IP67 по ГОСТ 14254. Степень защиты ПР исполнений комплекса ЭКОСТОК -12.1, ЭКОСТОК -12.2, Экосток-12.3 соответствует коду IP68 по ГОСТ 14254, глубина полного погружения – до 3 метров.

- 1.2.8. Устройство измерительно-вычислительное (УИВ) комплекса соответствует требованиям ГОСТ Р 52931 по устойчивости:
- к климатическим воздействиям группе исполнения В4 (диапазон температуры окружающего воздуха от 5 до 50 °C, относительная влажность до 80 % при температуре до 35 °C, без конденсации влаги);
 - к механическим воздействиям группе исполнения N2;
 - к атмосферному давлению группе исполнения Р2.

Степень защиты соответствует коду IP54 по ГОСТ 14254.

1.3. Метрологические характеристики

- 1.3.1. Пределы допускаемой основной относительной погрешности комплекса при измерении среднего объемного расхода, объема жидкости в диапазоне расходов от $0.03~Q_{\text{наи6}}$ до $Q_{\text{наи6}}$:
 - исполнения ЭКОСТОК -11.1, ЭКОСТОК -11.2 -

 \pm 0,25 % / класс A;

- исполнение ЭКОСТОК -11.3 -

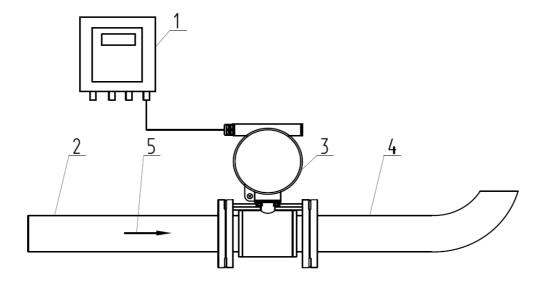
 \pm 0,35 % / класс В;

- исполнения ЭКОСТОК -12.1, ЭКОСТОК -12.2, ЭКОСТОК -12.3 \pm 0,5 % / класс С.
- 1.3.2. Пределы допускаемой основной приведенной погрешности комплекса при измерении среднего объемного расхода, объема жидкости в диапазоне расходов от $0,001Q_{\text{наиб}}$ до $0,03Q_{\text{наиб}}$:
 - исполнения ЭКОСТОК -11.1, ЭКОСТОК -11.2 -

 \pm 0,25 % / класс A;

- исполнение ЭКОСТОК -11.3 -

 \pm 0,35 % / класс В;


- исполнения ЭКОСТОК -12.1, ЭКОСТОК -12.2, ЭКОСТОК -12.3 \pm 0,5 % / класс С.
- 1.3.3. Дополнительная погрешность комплекса от изменения температуры окружающей среды первичного преобразователя расхода в пределах рабочего диапазона не превышает 0,1 % на каждые 10°C.
- 1.3.4. Дополнительная погрешность комплекса от изменения температуры измеряемой среды в пределах рабочего диапазона не превышает ± 0,2 %.

1.4. Принцип работы

1.4.1. Комплекс «АЭФТ-ЭКОСТОК» (рис.1) состоит из преобразователя расхода – полнопроходного электромагнитного расходомера, устройства измерительновычислительного и присоединительной арматуры - двух специальных патрубков: подводящего и отводящего.

Преобразователь расхода производит измерение объемного расхода и объема жидкости, передает измерительную информации в УИВ. УИВ принимает и обрабатывает сигналы от ПР, обеспечивает хранение результатов измерений в энергонезависимой памяти, их индикацию, а также возможность передачи по цифровому интерфейсу.

1.4.2. Жидкость, протекающая по открытому каналу, лотку или трубопроводу, поступает в измерительный участок ПР комплекса через подводящий патрубок.

1 – устройство измерительно-вычислительное; 2 – подводящий патрубок; 3 – преобразователь расхода; 4 – отводящий патрубок; 5 – направление потока

Рис. 1. Составные части комплекса

Отводящий патрубок имеет колено выпуска со свободным изливом жидкости, направленное вертикально вверх,. Такая конструкция отводящего патрубка обеспечивает заполнение контролируемой жидкостью измерительного участка ПР, подающего и отводящего патрубков и создание в них постоянного подпора,

ПР комплекса с присоединительной арматурой может устанавливаться в открытом канале, лотке, безнапорном трубопроводе или колодце канализационной системы. Из отводящего патрубка жидкость может свободно выливаться в лоток. трубопровод или колодец.

1.4.3. Для обеспечения поступления всего объема жидкости безнапорного потока в измерительный участок ПР подводящий патрубок может по заказу дополняться конфузором или изолирующим щитом необходимой конструкции и размеров.

По заказу может поставляться отводящий патрубок с фланцем на колене выпуска для подключения к отводящему трубопроводу.

1.4.4. Подводящий и отводящий патрубки имеют необходимые длины прямолинейных участков для обеспечения работы ПР.

Длина прямолинейных участков патрубков:

- подводящего не менее 5 DN,
- отводящего не менее 3 DN.

Выбор исполнения комплекса определяется требуемым диапазоном измерения расхода, необходимым классом точности и конструктивными особенностями объекта.

Габаритные размеры сборки преобразователя расхода с подводящим и отводящим патрубками приведены в Приложении В.

1.5. Входящие устройства

1.5.1. Преобразователь расхода

Преобразователь расхода обеспечивает:

- измерение среднего объемного расхода;
- определение объема нарастающим итогом;
- вывод измерительной информации в УИВ;
- автоматический контроль наличия нештатных ситуаций и отказов;
- защиту установочных данных от несанкционированного доступа.

Преобразователь расхода может также контролировать заполнения жидкостью измерительного участка путем измерения ее сопротивления.

В исполнениях ЭКОСТОК-11.1, ЭКОСТОК -11.2, ЭКОСТОК -11.3 комплекса «АЭФТ-ЭКОСТОК» в качестве ПР используется полнопроходной электромагнитный расходомер «ВЗЛЕТ ТЭР» повышенной точности. Вид преобразователя расхода приведен в Приложении А, рис.А.1 и А.2.

В исполнениях ЭКОСТОК-12.1, ЭКОСТОК -12.2, ЭКОСТОК -12.3 комплекса в качестве ПР используется полнопроходной электромагнитный расходомер «ВЗЛЕТ ТЭР» со стандартной градуировкой. Вид расходомера приведен в Приложении А, рис..А.3 и А.4.

1.5.2. Устройство измерительно - вычислительное

Устройство измерительно - вычислительное комплекса обеспечивает:

- обработку измерительной информации, поступающей от преобразователя расхода;
- индикацию результатов измерений на встроенном дисплее;
- архивирование в энергонезависимой памяти результатов вычислений и параметров функционирования расходомера;
- вывод информации по интерфейсу RS-232, RS-485 или по сети Ethernet (в зависимости от исполнения);
- автоматический контроль и индикацию наличия неисправностей комплекса и нештатных состояний ПР, а также запись в соответствующие журналы их вида и длительности (исполнения ЭКОСТОК-11.1, ЭКОСТОК -12.1);
 - возможность ввода настроечных параметров комплекса со встроенной клавиатуры;
 - защиту архивных и установочных данных от несанкционированного доступа.

В комплексах «АЭФТ-ЭКОСТОК» исполнений ЭКОСТОК-11.1 и ЭКОСТОК-12.1 качестве УИВ используется комплекс измерительно-вычислительный «ВЗЛЕТ» исполнения ИВК-ТЭР. Измерительная информация с ПР поступает в блок ИВК-ТЭР по внутреннему интерфейсу RS-485. Вывод информации с блока ИВК-ТЭР может производиться по интерфейсам RS-485, RS-232 или Ethernet. Вид блока ИВК-ТЭР приведен в Приложении Б, рис. Б.1.

В комплексах «АЭФТ-ЭКОСТОК» исполнений ЭКОСТОК-11.2 и ЭКОСТОК-12.2 в качестве УИВ используется тепловычислитель СПТ941. Измерительная информация с ПР поступает в тепловычислитель по импульсно-частотному каналу. Вывод информации с тепловычислителя может производиться по интерфейсам оптическому и RS-232. Вид тепловычислителя СПТ941 приведен в Приложении Б, рис. Б.2.

В комплексах «АЭФТ-ЭКОСТОК» исполнений ЭКОСТОК-11.3 и ЭКОСТОК-12.3 в качестве УИВ используется тепловычислитель «ВЗЛЕТ ТСРВ». Измерительная информация с ПР поступает в тепловычислитель по импульсно-частотному каналу. Вывод информации с тепловычислителя может производиться по интерфейсам RS-485 и RS-232. Вид тепловычислителя «ВЗЛЕТ ТСРВ» исполнения ТСРВ-043 приведен в Приложении Б, рис. Б.3.

Управление комплексом и индикация необходимых параметров обеспечивается с помощью жидкокристаллического индикатора и клавиатуры, расположенных на передней панели УИВ.

1.6. Комплект поставки

Состав комплекса «АЭФТ - ЭКОСТОК» при поставке в соответствии с табл. 2.

Таблица 2

Наименование и условное обозначение	Кол-во	Примечание
1. Преобразователь расхода	1	примечание 1
2. Устройство измерительно-вычислительное:	1	примечание 1
3. Подводящий патрубок	1	
4. Отводящий патрубок	1	
5. Комплект монтажных частей	1	примечание 2
6. Паспорт	1	

ПРИМЕЧАНИЯ.

- 1. Комплект поставки указан в эксплуатационной документации на данное устройство.
- 2. В комплект монтажных частей входят прокладки и крепежные изделия для подсоединения патрубков к преобразователю расхода.
- 3. В комплекте преобразователя расхода поставляется кабель питания и связи длиной 10 м. По заказу может поставляться кабель большей длины.

1.7. Маркировка и пломбирование

- 1.7.1. Составные части комплекса имеют маркировку наименования (обозначения) составной части, товарный знак предприятия-изготовителя, знак утверждения типа средства измерения и заводского номера.
- 1.7.2. После поверки устройство измерительно-вычислительное и преобразователь расхода пломбируются для защиты от модификации калибровочных параметров.
- 1.7.3. После монтажа на объекте и проверки функционирования комплекса для защиты от несанкционированного доступа при эксплуатации могут быть опломбированы навесной пломбой крышки электронных блоков ПР и УИВ.

1.8. Упаковка, хранение и транспортирование

1.8.1. Составные части комплекса упаковывается в индивидуальную тару категории КУ-2 по ГОСТ 23170

Подводящий и отводящий патрубки могут поставляться в отдельной таре.

1.8.2. Комплекс должен храниться в упаковке изготовителя в сухом отапливаемом помещении в соответствии с условиями хранения 1 согласно ГОСТ 15150. В помещении для хранения не должно быть токопроводящей пыли, паров кислот, щелочей, а также газов, вызывающих коррозию и разрушающих изоляцию.

Комплекс не требует специального технического обслуживания при хранении.

- 1.8.3. Комплекс может транспортироваться автомобильным, речным, железнодорожным и авиационным транспортом (кроме негерметизированных отсеков) при соблюдении следующих условий:
 - транспортировка осуществляется в заводской таре;
 - отсутствует прямое воздействие влаги;
 - температура не выходит за пределы от минус 30 до 50 °C;
 - влажность не превышает 95 % при температуре до 35 °C;

- вибрация в диапазоне от 10 до 500 Гц с амплитудой до 0,35 мм или ускорением до 49 м/с 2 ;
 - удары со значением пикового ускорения до 98 м/c²;
 - уложенные в транспорте изделия закреплены во избежание падения и соударений.

2. ПОРЯДОК РАБОТЫ

Порядок работы комплекса описан на примере исполнений Экосток-11.1 и Экосток-12.1, в составе которых в качестве УИВ используется блок ИВК-ТЭР.

Порядок применения тепловычислителей СПТ941 и ВЗЛЕТ ТСРВ указан в руководствах по эксплуатации на данные устройства.

2.1 Режимы работы

2.1.1. Управление работой комплекса «АЭФТ - ЭКОСТОК» исполнений Экосток-11.1 и Экосток-12.1 в различных режимах осуществляется с клавиатуры блока ИВК-ТЭР и организовано с помощью системы меню и окон индикации разного уровня, отображаемых на дисплее. Система управления и индикации, а также порядок установки режимов управления приведены в эксплуатационной документации расходомера ВЗЛЕТ ТЭР и комплекса ИВК-ТЭР.

Для управления работой возможно также использование персонального компьютера, подключаемого по интерфейсам RS-232/RS-485, Ethernet к блоку ИВК-ТЭР.

- 2.1..2. Имеется три режима работы:
- РАБОТА эксплуатационный режим (режим пользователя);
- СЕРВИС режим подготовки к эксплуатации;
- НАСТРОЙКА режим юстировки и поверки.

Режимы отличаются уровнем доступа к информации (индицируемой на дисплее и/или передаваемой по интерфейсам RS-232/RS-485, Ethernet) и возможностями по изменению установочных параметров.

- 2.1.3. Режим РАБОТА режим эксплуатации на объекте. В режиме РАБОТА пользователь имеет возможность просматривать:
 - а) измеряемые значения объемного расхода, накопленного объема;
 - б) содержимое архивов и журналов
- в) значение электрического сопротивления жидкости, протекающей через расходомер:
- г) конфигурационные параметры: режим перехода приборных часов на зимнее / летнее время, типы установленных сервисных модулей, внешних связей и характеристики выходов;
 - д) параметры работы:
 - показания часов реального времени;
 - параметры связи по интерфейсам RS-232, RS-485, Ethernet.
 - 2.1.4. Режим СЕРВИС режим подготовки к эксплуатации на объекте.
- В режиме СЕРВИС дополнительно (по отношению к режиму РАБОТА) можно просматривать и изменять:
 - параметры универсального выхода;
 - параметры выходов сервисных модулей;
 - настройки архива;
 - показания приборных часов;
 - единицы измерения расхода (объема) M^3/V^2 ; M^3/C (M^3); D/MUH; D/C (D/C);
 - режим перехода приборных часов на зимнее / летнее время.
- 2.1.5. В режиме НАСТРОЙКА можно просматривать и модифицировать все параметры без исключения.

В режиме НАСТРОЙКА возможна также очистка архивов и журналов (за исключением «Журнала режимов»).

2.2. Регистрация результатов работы

2.2.1. Результаты измерений и вычислений записываются во внутренние архивы блока ИВК-ТЭР: часовой, суточный, месячный, а также могут записываться в произвольный архив, интервал архивирования которого может устанавливаться.

Все архивы имеют одинаковую структуру. Глубина архивов составляет:

- часового 1560 записей;
- суточного 366 записей;
- месячного 48 записей;
- произвольного 1000 записей.

В перечень архивируемых параметров входят:

- **V+** объем за интервал архивирования, измеренный при прямом направлении пото- ка, M^3 ;
- **V-** объем за интервал архивирования, измеренный при обратном направлении потока, \mathbf{M}^3 ;
 - Qcp среднее значение расхода за период, л/мин;
 - **Rизм** среднее за период значение измерения сопротивления жидкости, кОм;
 - Тсс время отсутствия связи с прибором;
 - Тнер время простоя.

Также фиксируется слово состояния, содержащее коды нештатных ситуаций и отказов в работе расходомера и блока ИВК-ТЭР, возникших в течение интервала архивирования.

Индикация значений архивируемых параметров сопровождается датой и временем сохранения архивной записи (день.мес.год час:мин:сек).

Для каждого архива предусмотрена процедура поиска требуемой архивной записи.

2.2.2. Нештатные ситуации, ошибки и отказы, возникающие в процессе работы комплекса, фиксируются в журнале ошибок. Журнал может содержать до 1000 записей.

В записи журнала ошибок фиксируются:

- номер записи;
- наименование нештатной ситуации (ошибки, отказа);
- дата и время возникновения и прекращения нештатной ситуации (ошибки, отказа).
- 2.2.3. Факт модификации значений установочных параметров фиксируется в журнале пользователя, который может содержать до 1000 записей.

В записи журнала пользователя фиксируется:

- номер записи;
- дата и время произведенной модификации;
- обозначение модифицируемого параметра;
- значение параметра до модификации;
- значение параметра после модификации.
- 2.2.4. Изменение режима работы прибора фиксируется в журнале режимов, который может содержать до 500 записей.

В записи журнала режимов фиксируется:

- номер записи;
- наименование текущего режима;
- дата и время установки режима.

2.3. Внешние связи

Цифровые интерфейсы RS-232, RS-485 и Ethernet блока ИВК-ТЭР обеспечивают доступ к измерительным, расчетным и установочным параметрам с возможностью модификации установочных параметров, к архивам и журналам, а также к управлению комплексом. Цифровые интерфейсы поддерживают протокол ModBus (RTU ModBus и ASCII ModBus).

Интерфейс RS-232 может использоваться для непосредственной связи с персональным компьютером:

- по кабелю (при длине линии связи до 15 м);
- по телефонной линии (с помощью телефонного модема);
- по эфиру (с помощью адаптера сотовой связи).

Дальности связи по телефонной линии и эфиру определяются характеристиками каналов связи.

Интерфейс RS-485 обеспечивает связь по кабелю в группе из нескольких абонентов, одним из которых может быть компьютер, при длине линии связи до 1200 м.

Скорость обмена по интерфейсам RS-232 и RS-485 от 2400 до 19200 Бод, а также параметры связи устанавливаются программно с помощью компьютера либо блока ИВК-ТЭР.

ВНИМАНИЕ! Не допускается одновременное подключение и использование интерфейсов RS-232 и RS-485.

Интерфейс Ethernet блока ИВК-ТЭР реализуется с помощью сервисного модуля Ethernet, устанавливаемого по заказу. Интерфейс Ethernet используется для связи приборов в локальной сети, а также может использоваться для обмена данными через Интернет между приборами локальной сети и удаленным компьютером (компьютерами). Обмен осуществляется через шлюз локальной сети, имеющий собственный (глобальный) IP-адрес. При обмене данные упаковываются в стек протоколов Ethernet / IP / UDP / TFTP / ModBus. Поддерживается также протокол ARP (Ethernet / ARP), который используется для определения МАС-адреса узла по IP-адресу запроса.

2.4. Просмотр записей в архивах и журналах

2.4.1. Для просмотра записей в архивах необходимо выбрать меню **Архивы** / **Просмотр архивов** и вид архива: **Часовой, Суточный, Месячный, Произвольный**. Затем выбрать нужный интервал архивирования при помощи кнопок → и с помощью кнопок просмотреть заархивированные значения параметров.

Во всех архивах последняя строка окна содержит опцию Поиск записи. После активизации этой опции происходит переход в меню ПОИСК АРХ. ЗАПИСИ и курсор устанавливается в строке с индикацией интервала архивирования. Для поиска записи производится активизация строки и ввод требуемого интервала архивирования. Если введенный для поиска интервал архивирования имеется в архиве, то осуществляется переход к заданному (либо ближайшему) интервалу архивирования. Если введенный интервал архивирования отсутствует, то в последней строке индицируется надпись: Запись не найдена.

- 2.4.2. В меню **Архивы / Настройка архивов** в строке **Пер. пр.** можно выбрать период архивации произвольного архива 30 мин или 1 час, а также просмотреть статистику записей во все архивы.
- 2.4.3. Для просмотра записей в журналах необходимо выбрать меню **Журналы** и вид журнала: **Журнал ошибок, Журнал режимов** или **Журнал пользователя**. Порядок просмотра записей в журналах такой же, как при просмотре записей в архивах.

2.5 Управление комплексом

2.5.1. Управление комплексом с блока ИВК-ТЭР

Управление работой комплексов «АЭФТ-ЭКОСТОК» исполнений ЭКОСТОК-11.1 и ЭКОСТОК-12.1 в различных режимах осуществляется с клавиатуры блока ИВК-ТЭР с помощью системы меню и окон индикации разного уровня, отображаемых на дисплее блока, либо с помощью персонального компьютера по интерфейсу RS-232, RS-485 или Ethernet.

2.5.1.1. На лицевой панели блока ИВК-ТЭР находятся жидкокристаллический дисплей и клавиатура. Дисплей обеспечивает вывод четырех строк алфавитно-цифровой информации при 20 символах в строке.

Клавиатура блока ИВК-ТЭР состоит из восемнадцати кнопок, назначение которых указано в Приложении Б, табл. Б.1.

Клавиатура обеспечивает возможность:

- перемещения по многоуровневой системе меню и окон;
- оперативного управления индикацией на дисплее;
- ввода установочной информации;
- просмотра архивов и журналов
- 2.5.1.2. Для управления комплексом используется многоуровневая система (Приложение Г), состоящая из основного меню, меню нижнего уровня и окон индикации. Основное меню (рис.2) имеет неизменный состав. Состав и структура меню нижнего уровня и окон определяются режимом работы.

Рис. 2. Вид основного меню.

- 2.5.1.3. Индикация на дисплее блока ИВК-ТЭР состоит из наименования меню (окна), располагающегося неподвижно в первой строке дисплея, и наименований пунктов меню (параметров), которые могут смещаться вверх или вниз.
- 2.5.1.4. Для указания на выбранный пункт меню, параметр, разряд редактируемого числа или изменяемую часть строки служит курсор. Вид и положение курсора определяется возможностью изменения индицируемой в данной строке информации:
 - → возможен переход к меню / окну нижнего уровня;
- возможно изменение значения параметра или команды (состояния), индицируемой в данной строке;
- - изменение значения параметра невозможно (для некоторых параметров при этом возможен переход к укрупненной индикации значения параметра);
- возможно изменение значения разряда числа, под которым расположен мигающий курсор данного вида.
- - содержимое строки между знаками (треугольными скобками) может быть изменено.
- 2.5.1.5. Одновременно на дисплее может индицироваться не более 3-х строк пунктов меню (параметров) из списка. Поэтому в начале первой и последней строк на дисплее могут располагаться указатели направления прокрутки (рис.2) в виде треугольников \blacktriangle и \blacktriangledown , вершины которых направлены в стороны возможного перемещения по строкам (пунктам меню, параметрам).

Для перехода к другому пункту меню (параметру) производится прокрутка списка вверх или вниз с помощью кнопок •.

По первому нажатию кнопки укурсор смещается вниз на одну строку и устанавливается между указателями направления прокрутки. При последующих нажатиях кнопки начинается смещение списка пунктов меню (параметров) вверх при неподвижных курсоре и указателях направления прокрутки. При достижении последнего пункта меню (параметра) курсор перемещается на последнюю строку на место нижнего указателя прокрутки.

Порядок действий при переборе списка от конца к началу с помощью кнопки 🗖 аналогичный.

2.5.1.6. Для перехода к меню (окну) нижнего уровня, активизации пункта меню (параметра) необходимо требуемый пункт меню (параметр) установить в одной строке с курсором → (►) и нажать кнопку С.

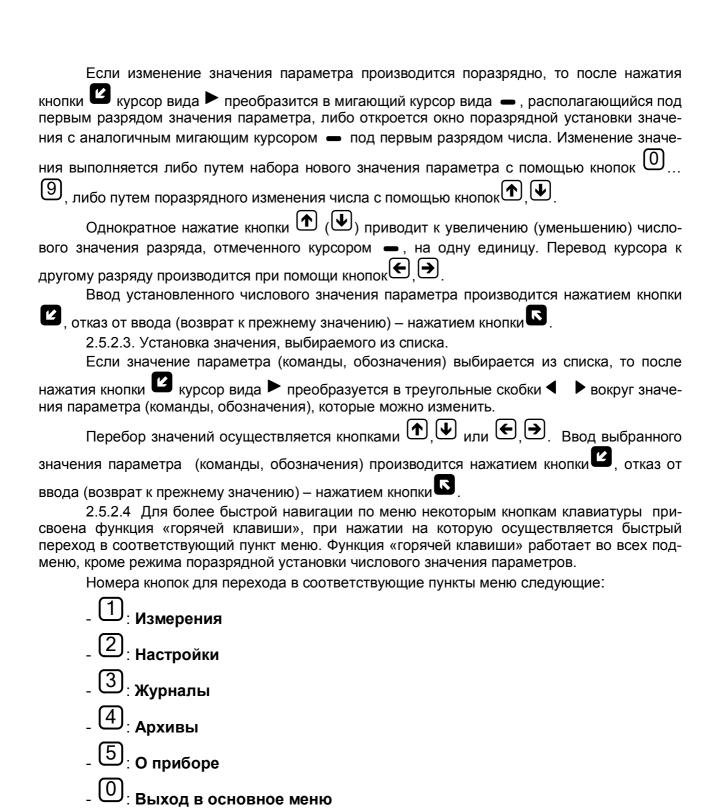
Выход из меню (окна) нижнего уровня без изменения значения параметра или возврат в окно (меню) верхнего уровня осуществляется по нажатию кнопки , с вводом нового установленного значения параметра – по нажатию кнопки.

2.5.1.7. В одном меню (окне) может последовательно индицироваться несколько однотипных по содержанию, но разных по принадлежности меню (окон). Принадлежность меню (окна) обозначается порядковым номером универсального выхода блока, записи в журнале в строке с номером записи или обозначением даты и времени сохранения архивной записи.

Наличие нескольких однотипных меню (окон) и возможность их последовательного перебора указывается символом слева от наименования меню (окна), содержащего порядковый номер. Для перехода в другое однотипное меню (окно) используются кнопки →

2.5.1.8. В блоке ИВК-ТЭР предусмотрена возможность индикации значений измеряемого расхода и некоторых настроечных параметров шрифтом большего размера (рис.3). Окно с укрупненной индикацией раскрывается после активизации наименования соответствующего параметра по нажатию кнопки.

Расход
О. 000


Рис. 3. Пример вывода значения параметра на дисплей шрифтом большего размера.

2.5.1.9. Блок ИВК-ТЭР с периодичностью, равной Т опроса, обращается к расходомеру по интерфейсу RS-485. В случае отсутствия связи после нескольких попыток на экране появляется надпись «НЕТ СВЯЗИ С ИЗМЕРИТЕЛЕМ». Убрать это информационное окно можно нажатием любой кнопки.

2.5.2. Ввод команд и значений установочных параметров

2.5.2.1. Для изменения значения установочного параметра или команды необходимо открыть соответствующее меню (окно), совместить требуемую строку из списка с курсором вида ▶ и нажать кнопку . Новое значение либо устанавливается поразрядно (числовое значение), либо выбирается из списка.

2.5.2.2. Поразрядная установка числового значения.

2.5.3. Настройка комплекса

2.5.3.1. При установленной связи с расходомером блок ИВК-ТЭР позволяет произвести полную настройку и конфигурирование подключенного расходомера с помощью программного обеспечения, поставляемого с ИВК-ТЭР. Порядок настройки расходомера «ВЗЛЕТ ТЭР» приведен в его руководстве по эксплуатации

При выпуске из производства в расходомере «ВЗЛЕТ ТЭР» устанавливается сетевой адрес 1 и скорость связи 19200 бод. При правильном подключении по интерфейсу RS-485 блок ИВК-ТЭР автоматически связывается с расходомером.

В случае отсутствия связи необходимо проверить соответствие сетевого адреса и скорости связи в настройках блока ИВК-ТЭР в меню Настройка / Вычислитель / Системные параметры / Настройки связи / Н-ка связи с ПИ сетевому адресу и скорость связи, установленных в расходомере. Выяснить параметры связи расходомера можно с помощью персонального компьютера, подключенного к расходомеру по интерфейсу.

- 2.5.3.2. Настройка блока ИВК-ТЭР производится в меню Настройка / Вычислитель:
- в подменю Т опроса выбирается периодичность связи с расходомером;
- в подменю **Размерности** назначаются размерности параметров, поступающих от расходомера по интерфейсу (расхода, объема, электрического сопротивления жидкости);
- в подменю **Системные параметры** / **Установка часов** производится коррекция (при необходимости) приборного времени;
- в подменю **Системные параметры** / **Настройки связи** устанавливаются параметры связи по интерфейсу с подключенным расходомером, с внешними устройствами, настройка интерфейса Ethernet или модема (при их наличии).
- 2.5.3.3. Для коррекции приборной даты (времени) блока ИВК-ТЭР выбирается и активизируется меню Настройка / Вычислитель / Системные параметры / Установка часов / Дата (Время), затем кнопками , курсор последовательно устанавливается в позиции «день», «мес.», «год» («час.», «мин.», «сек.»). В каждой позиции кнопками . 9 либо , модифицируется значение выбранного параметра. Ввод установленного значения параметра производится нажатием кнопки , отказ от ввода нажатием кнопки .

ВНИМАНИЕ! В связи с отменой на территории России перехода на «зимнее» и «летнее» время необходимо в меню **Установка часов** / **Время перевода** для параметра **Режим** установить значение **нет перевода**. При этом прекращается доступ в подменю **Зимнее время** и **Летнее время**.

2.5.3.4. В меню **Архивы** / **Настройка архивов** в строке **Пер. пр.** можно выбрать период архивации произвольного архива — 30 мин или 1 час, а также просмотреть статистику записей во все архивы.

3. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

3.1. Эксплуатационные ограничения

- 3.1.1. Эксплуатация составных частей комплекса должна производиться в условиях воздействующих факторов, не превышающих допустимых значений, указанных в п.п. 1.2.8 и 1.2.9 настоящего руководства.
- 3.1.2. Необходимость защитного заземления определяется в соответствии с требованиями главы 1.7 «Правил устройства электроустановок» в зависимости от напряжения питания и условий размещения изделия.
- 3.1.3. Молниезащита объекта размещения изделия, выполненная в соответствии с «Инструкцией по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» СО153-34.21.122-2003, предохраняет изделие от выхода из строя при наличии молниевых разрядов.

3.2. Меры безопасности

- 3.2.1. К работе с изделием допускается обслуживающий персонал, изучивший эксплуатационную документацию на изделие и его составные части.
- 3.2.2. При подготовке изделия к использованию должны соблюдаться «Правила технической эксплуатации электроустановок потребителей» и «Межотраслевые правила по охране труда (Правила безопасности) при эксплуатации электроустановок».
 - 3.2.3. При проведении работ опасными факторами являются:
 - переменное напряжение с действующим значением до 264 В частотой 50 Гц;
 - иные факторы, связанные со спецификой и профилем объекта установки изделия.

При проведении работ следует руководствоваться правилами и нормами требований по безопасности выполнения работ на конкретном объекте.

- 3.2.4. В процессе работ по монтажу, пусконаладке или ремонту запрещается:
- производить подключения к приборам, переключения режимов или замену электрорадиоэлементов при включенном питании;
- использовать неисправные электроприборы, электроинструменты либо без подключения их корпусов к магистрали защитного заземления (зануления).

3.3. Возможные неисправности

После включения питания комплекса производится его самодиагностика, на дисплее индицируется информация о комплексе и версия программного обеспечения. По завершению самодиагностики на дисплее отображается основное меню. Введенный в эксплуатацию комплекс работает непрерывно в автоматическом режиме.

- 3.3.1. Неисправности и нештатные ситуации, диагностируемые блоком ИВК-ТЭР, разделяются на неисправности подключенного расходомера и неисправности собственно блока ИВК-ТЭР. Факт возникновения неисправности расходомера отображается в слове состояния расходомера.
- 3.3.2. В случае возникновения неисправности или нештатной ситуации следует проверить:
 - наличие и соответствие нормам напряжения питания составных частей комплекса;
 - надежность подсоединения цепей питания и связи;
 - заполнение жидкостью отводящего патрубка ПР;
- корректность значений отсечек по расходу, установленных в расходомере и в блоке ИВК-ТЭР; при необходимости изменить их значения;
 - настройки интерфейсов и выходов блока ИВК-ТЭР.

При положительных результатах перечисленных выше проверок следует обратиться к изготовителю для определения возможности дальнейшей эксплуатации расходомера, блока ИВК-ТЭР или комплекса в целом.

4. ТРЕБОВАНИЯ И ПОРЯДОК МОНТАЖА

4.1. Общие правила

- 4.1.1. К проведению работ по монтажу комплекса допускаются лица:
- изучившие документацию на комплекс и его составные части;
- имеющие право на выполнение данного вида работ на объекте установки.
- 4.1.2. Транспортировка составных частей комплекса к месту монтажа должна осуществляться в заводской таре.
- 4.1.3. Не допускается размещение составных частей комплекса в условиях, не соответствующих указанным в эксплуатационной документации на входящие устройства.

4.2. Требования по монтажу преобразователя расхода комплекса

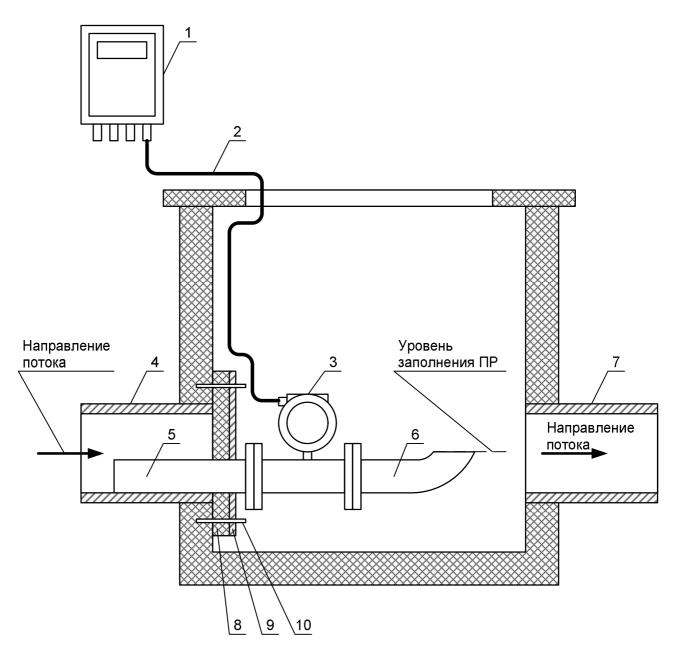
По окончанию монтажа преобразователя расхода комплекса:

- подводящий и отводящий патрубки должны располагаться строго горизонтально;
- выпуск колена отводящего патрубка должен быть направлен вертикально вверх;
- блок электроники преобразователя расхода должен располагаться над его измерительным участком, допускается отклонение оси стойки блока электроники преобразователя расхода от вертикали на угол не более ±30°.

4.3. Порядок монтажа преобразователя расхода комплекса

Порядок монтажа преобразователя расхода и патрубков описан на примере размещения в канализационном колодце.

4.3.1. Порядок монтажа подводящего патрубка


При размещении преобразователя расхода и патрубков комплекса в канализационном колодце входной конец подводящего патрубка, куда должна поступать контролируемая жидкость, заводится в безнапорный трубопровод или лоток, по которому стоки поступают колодец. Подводящий патрубок укладывается на дно лотка или безнапорного трубопровода.

Для обеспечения поступления всего объема стоков в расходомер необходимо загерметизировать внутреннюю полость канала стока вокруг подводящего патрубка.

Либо для этой цели можно использовать изолирующий щит, с помощью которого перекрывается поступление стоков из трубопровода или лотка непосредственно в колодец, минуя подводящий патрубок (рис.4).

Изолирующий щит с отверстием соответствующего диаметра одевается на подводящий патрубок и приваривается к нему. Если стоки поступают в колодец по лотку, то щит с уплотнительной прокладкой крепится к стенке колодца. Если стоки поступают по трубопроводу, то щит может привариваться непосредственно к торцу этого трубопровода.

Щит соответствующей формы и размеров поставляется по заказу.

1 — УИВ; 2 — кабель питания и связи расходомера; 3 — расходомер ВЗЛЕТ ТЭР со степенью защиты IP68; 4 — безнапорный подводящий трубопровод канализации; 5 — подводящий патрубок ПР; 6 — отводящий патрубок ПР; 7 — безнапорный отводящий трубопровод канализации; 8 — уплотнительная прокладка; - 9 — изолирующий щит; 10 — анкер со шпилькой

Рис. 4. Пример размещения ПР в колодце канализационной системы.

Размеры сборки расходомера с патрубками указаны в Приложении В.

4.3.2. Порядок монтажа расходомера и отводящего патрубка

4.3.2.1. После установки подводящего патрубка к нему пристыковывается расходомер, а к расходомеру - отводящий патрубок. При этом направление стрелки на расходомере, указывающее требуемое направление потока, должно совпадать с направлением потока жидкости, а колено выпуска отводящего патрубка должно быть направлено вертикально вверх.

При сборке конструкции используется поставляемый крепеж. Болты в прилегающие фланцы должны заводиться со стороны фланцев патрубков. При этом расстояние от торца болта до конструкции расходомера должно быть не менее 3 мм.

4.3.2.2. При сборке между фланцами расходомера и прилегающими фланцами патрубков необходимо установить прокладки, поставляемые в комплекте расходомера.

ВНИМАНИЕ! При установке расходомера необходимо обеспечить соосность прокладок с расходомером, т.е. не должно быть даже частичного перекрытия прокладкой внутреннего канала его измерительного участка. Для сохранения соосности прокладок при установке расходомера рекомендуется фиксировать их с помощью клея.

Установка расходомера должна производиться только после окончания сварочных работ.

4.3.2.3. Затяжка гаек при установке расходомера должна производиться в очередности, обозначенной на рис.5, динамометрическим ключом с крутящим моментом не больше значения Мк, указанного в табл.8.

В случае превышения усилия затяжки возможно повреждение расходомера.

Во избежание образования перекоса и несоосности рекомендуется затяжку гаек производить за несколько проходов, постепенно увеличивая усилие затяжки до указанного в табл.8 и контролируя при этом соосность прилегающих фланцев.

Таблица 8

DN, мм	32	40	50	65	80	100	150	200	300
Мк, Н⋅м	25	35	35	40	50	60	80	100	150

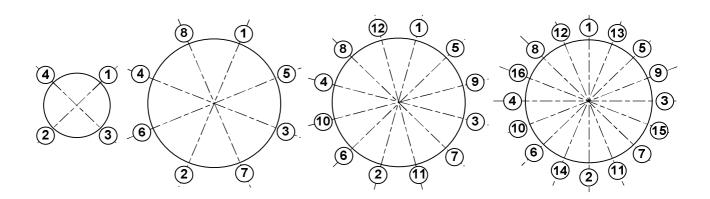


Рис. 5. Очередность затяжки гаек при монтаже.

4.4. Требования по монтажу устройства измерительно-вычислительного

Устройство измерительно-вычислительное должно размещаться в условиях, указанных в п.1.2.8.

Во избежание попадания влаги внутрь УИВ рекомендуется располагать его вертикально гермовводами вниз.

4.5. Порядок и правила электромонтажа

Порядок и правила электромонтажа расходомера и устройства измерительновычислительного указаны в эксплуатационной документации на входящие устройства.

4.6. Подготовка к вводу в эксплуатацию

4.6.1. При вводе комплекса в эксплуатацию должно быть проверено:

- соответствие направления стрелки на корпусе расходомера направлению потока жидкости;
- правильность подключения расходомера и взаимодействующего оборудования в соответствии с выбранной схемой;
 - правильность заданных режимов работы выходов расходомера;
 - соответствие напряжения питания требуемым техническим характеристикам.
- 4.6.2. Комплекс при первом включении или после длительного перерыва в работе готов к эксплуатации после 30-минутного прогрева составляющих комплекса.

4.7. Демонтаж расходомера

Демонтаж расходомера для отправки на периодическую поверку либо в ремонт производится в нижеуказанном порядке:

- выключить питание расходомера;
- отсоединить кабельную часть разъема от приборной части разъема расходомера;
- установить и завернуть предохранительные колпачки на приборную и кабельную части герморазъема расходомера;
 - демонтировать расходомер с отводящим патрубком;
 - отсоединить отводящий патрубок от расходомера.

Перед упаковкой очистить внутреннюю полость измерительного участка расходомера от отложений и остатков жидкости

5. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 5.1. Введенный в эксплуатацию комплекс рекомендуется подвергать периодическому осмотру с целью контроля:
 - работоспособности;
 - наличия и соответствие нормам напряжения питания составных частей;
 - соблюдения условий эксплуатации составных частей;
 - надежности электрических и механических соединений;
 - отсутствия повреждений составных частей, кабелей питания и связи.

Периодичность осмотра зависит от условий эксплуатации, но не должна быть реже одного раза в две недели.

5.2. Несоблюдение условий эксплуатации в соответствии с требованиями может привести к отказу комплекса или превышению допустимого уровня погрешности измерений.

Внешние повреждения также могут привести к превышению допустимого уровня погрешности измерений. При появлении внешних повреждений изделия, кабелей питания и связи необходимо обратиться к изготовителю для определения возможности дальнейшей эксплуатации комплекса.

Наличие напряжения питания блока ИВК-ТЭР определяется по наличию свечения панели дисплея. Работоспособность комплекса определяется по содержанию индикации на дисплее.

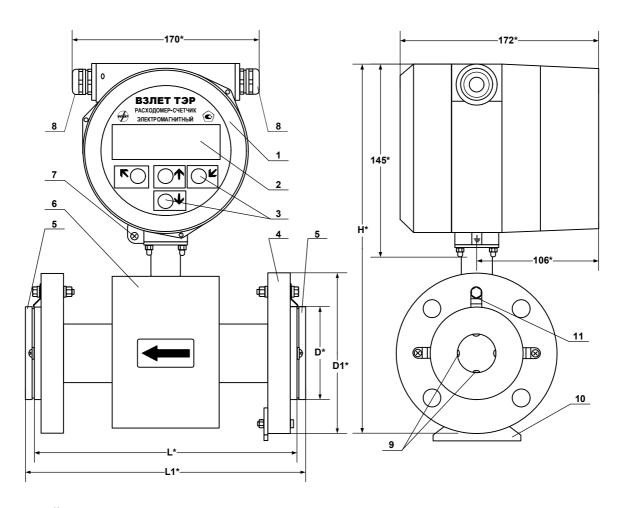
5.3. В процессе эксплуатации комплекса не реже одного раза в год необходимо проводить профилактический осмотр внутренней полости измерительного участка расходомера на наличие загрязнений и/или отложений. Допускается наличие легкого рыжеватого налета, который при проведении профилактики должен сниматься с помощью чистой мягкой ветоши, смоченной в воде.

При наличии загрязнений и отложений другого вида или их существенной толщины необходимо произвести очистку поверхности внутренней полости измерительного участка расходомера, а также необходимо убрать отложения во внутренних полостях прямых отрезков подводящего и отводящего патрубков. Очистку можно выполнить, отсоединив от расходомера отводящий патрубок с коленом.

При установке отводящего патрубка на место после очистки расходомера необходимо убедиться, что колено расположено вертикально и направлено вверх.

Необходимая периодичность профилактических осмотров с учетом вида и состава контролируемой жидкости может быть уточнена в процессе эксплуатации комплекса.

5.4. Отправка составной части комплекса для проведения поверки либо ремонта должна производиться с паспортом прибора.

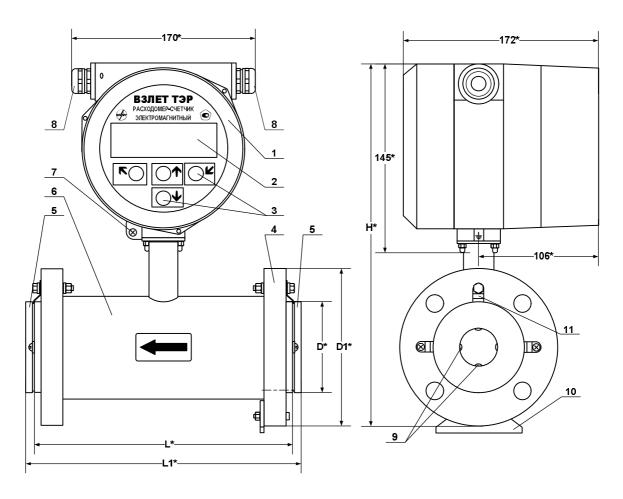

В сопроводительных документах необходимо указывать почтовые реквизиты, телефон и факс отправителя, а также способ и адрес обратной доставки.

При отправке составной части комплекса в ремонт изготовителю необходимо указывать заводской номер комплекса.

6. ПОВЕРКА КОМПЛЕКСА

Поверка комплекса измерительно-вычислительного «АЭФТ-ЭКОСТОК» производится в соответствии с методикой поверки МП 0597-1-2017, приведенной в Приложении Д.

ПРИЛОЖЕНИЕ А. Расходомер «ВЗЛЕТ ТЭР»

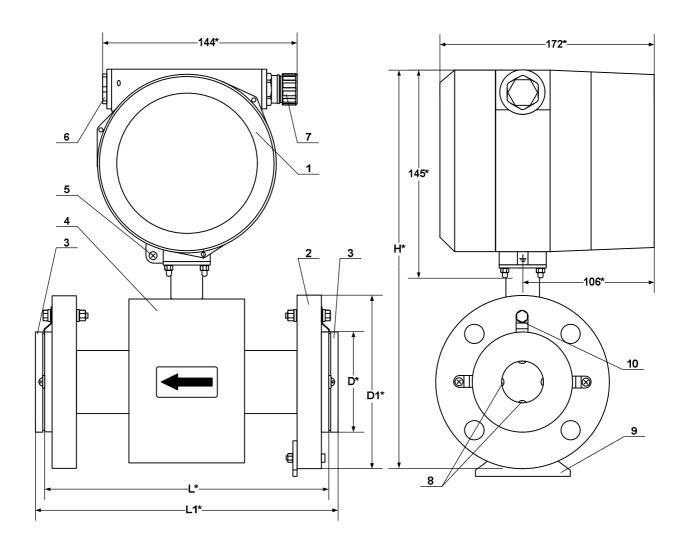


* - справочный размер

1 — блок электроники; 2 — индикатор; 3 — кнопки оптической клавиатуры; 4 — место маркировки материала электродов; 5 — защитное кольцо; 6 — первичный преобразователь расхода; 7 — винт крепления заземляющего проводника; 8 — гермоввод; 9 — электроды; 10 — вспомогательная опора; 11 — элемент крепления защитного кольца, обеспечивающий электрический контакт корпуса расходомера с рабочей жидкостью.

DN, мм	D*, мм	D1*, мм	L*, мм (без колец)	L1*, мм (с кольцами)	Н*, мм	Масса, не более, кг
20	50	100	142	150	270	5,6
25	58	110	192	200	280	6,2
32	65	130	192	200	290	7,7
40	75	140	192	200	300	8,6

Рис.А.1. Вид расходомера «ВЗЛЕТ ТЭР» повышенной точности DN20 - DN40

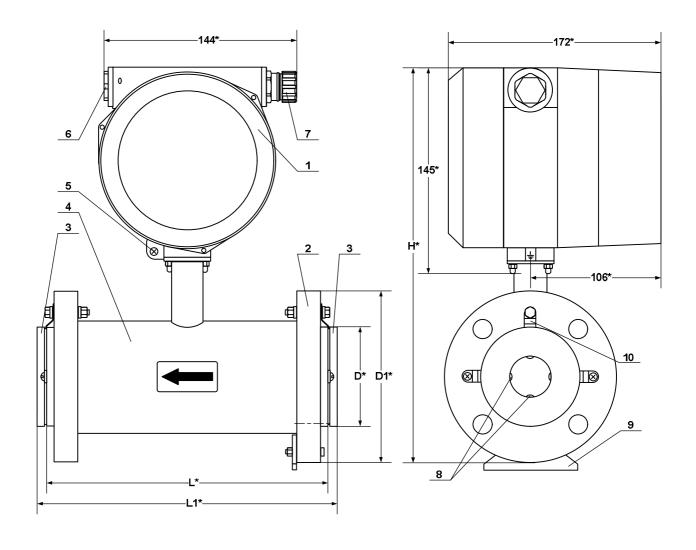


* - справочный размер

1 — блок электроники; 2 — индикатор; 3 — кнопки оптической клавиатуры; 4 — место маркировки материала электродов; 5 — защитное кольцо; 6 — первичный преобразователь расхода; 7 — винт крепления заземляющего проводника; 8 — гермоввод; 9 — электроды; 10 — вспомогательная опора; 11 — элемент крепления защитного кольца, обеспечивающий электрический контакт корпуса расходомера с рабочей жидкостью.

DN, мм	D*, мм	D1*, мм	L*, мм (без колец)	L1*, мм (с кольцами)	Н*, мм	Масса, не более, кг
50	87	155	192	200	315	10,1
65	109	175	192	200	325	11,5
80	120	190	192	200	340	13,6
100	149	225	242	250	370	19,7
150	202	290	262	270	430	33,2
200	258	358	322	340	493	52
300	362	475	482	500	607	98

Рис.А.2. Вид расходомера «ВЗЛЕТ ТЭР» повышенной точности DN50 - DN300

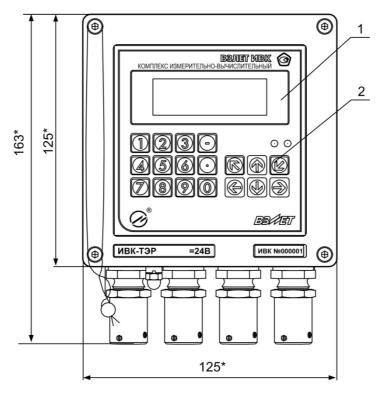


* - справочный размер

1 — блок электроники; 2 — место маркировки материала электродов; 3 — защитное кольцо; 4 — измерительный участок расходомера; 5 — винт крепления заземляющего проводника; 6 — заглушка; 7 — герморазъем с защитным колпачком; 8 — электроды; 9 — вспомогательная опора; 10 — элемент крепления защитного кольца, обеспечивающий электрический контакт корпуса расходомера с рабочей жидкостью

DN, mm	D*, мм	D1*, мм	L*, мм (без колец)	L1*, мм (с кольцами)	Н*, мм	Масса, не более, кг
32	65	130	192	200	290	8,5
40	75	140	192	200	300	9,2

Рис.А.3. Вид расходомеров «ВЗЛЕТ ТЭР» со стандартной градуировкой DN32 и DN40.


^{* -} справочный размер

1 — блок электроники; 2 — место маркировки материала электродов; 3 — защитное кольцо; 4 — измерительный участок расходомера; 5 — винт крепления заземляющего проводника; 6 — заглушка; 7 — герморазъем с защитным колпачком; 8 — электроды; 9 — вспомогательная опора; 10 — элемент крепления защитного кольца, обеспечивающий электрический контакт корпуса расходомера с рабочей жидкостью

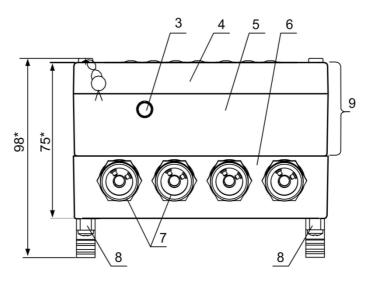

DN, мм	D*, мм	D1*, мм	L*, мм (без колец)	L1*, мм (с кольцами)	Н*, мм	Масса, не более, кг
50	87	155	192	200	315	10,9
65	109	175	192	200	325	12,6
80	120	190	192	200	340	14,9
100	149	225	242	250	370	20,1
150	202	290	262	270	430	35,3
200	258	358	322	340	493	52,5
300	362	475	482	500	607	98,5

Рис.А.4. Вид расходомеров «ВЗЛЕТ ТЭР» со стандартной градуировкой DN50 - DN300.

ПРИЛОЖЕНИЕ Б. Устройства измерительно-вычислительные

вид спереди

вид снизу

1 — индикатор; 2 — клавиатура; 3 — клемма заземления; 4 — модуль вычислителя; 5 — модуль ВИП; 6 — монтажный модуль; 7 — гермоводы с креплением металлорукава для кабелей питания и связи; 8 — кронштейны для установки на DIN-рейку; 9 — субблок вычислителя.

Рис.Б.1. Вид блока ИВК-ТЭР.

^{* -} справочный размер

Таблица Б.1. Назначение кнопок клавиатуры блока ИВК-ТЭР

Графическое обозначение	Назначение кнопки
ооозпачение	1. При выборе пункта меню, параметра, архивной записи – перемещение по
	списку вверх.
lack	2. При выборе значения из списка- перемещение по списку возможных значе-
	ний вверх. 3. При установке значения числовой величины – увеличение числового значе-
	ния разряда.
	1. При выборе пункта меню, параметра, архивной записи – перемещение по
	списку вниз.
•	2. При выборе значения из списка перемещение по списку возможных значе-
	ний вниз. 3. При установке значения числовой величины – уменьшение числового зна-
	чения разряда.
	1. При установке числовых величин – перемещение курсора по разрядам
	числа влево.
←	2. При просмотре журнальных или архивных записей – уменьшение номера
	записи. 3. При переборе однотипных меню (окон) – переход к предыдущему меню
	(окну).
	1. При установке числовых величин – перемещение курсора на разряд числа
	вправо.
(→)	2. При просмотре журнальных или архивных записей – увеличение номера записи.
	3. При переборе однотипных меню (окон) – переход к последующему меню
	(окну).
4	1. Переход в выбранное меню/окно нижнего уровня.
	2. Выполнение операции, ввод установленного значения параметра.
R	1. Выход в меню/окно более высокого уровня. 2. Отказ от выполнения операции, отказ от ввода измененного значения па-
	раметра и выход в меню/окно верхнего уровня.
\bigcirc	1. Набор числового значения установочного параметра.
0 9	2. В режиме навигации по меню – горячие клавиши.
•	Перевод курсора в разряд дробной части числа.
	Знак отрицательного числового значения параметра.

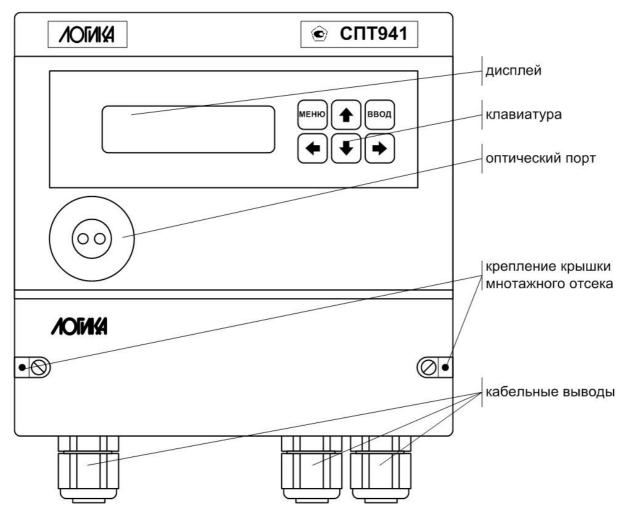
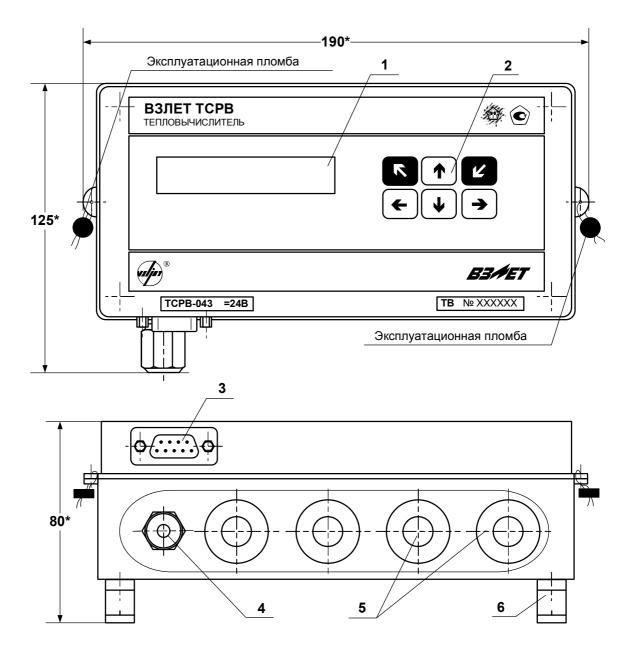



Рис.Б.2. Вид тепловычислителя СПТ941


^{* -}справочный размер

1 — индикатор; 2 — кнопки управления; 3 — разъем RS-232; 4 — гермоввод кабеля питания; 5 — заглушки мембранные;6 — кронштейн для крепления на DIN-рейку

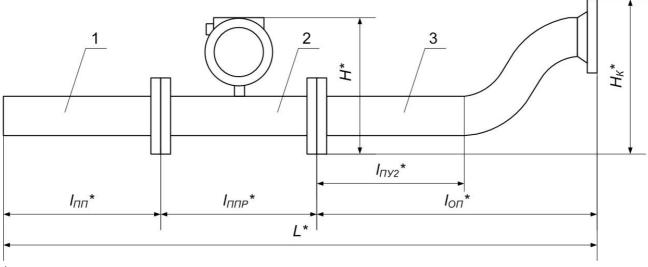
Рис.Б.3. Вид тепловычислителя «ВЗЛЕТ ТСРВ» исполнения ТСРВ-043

.

ПРИЛОЖЕНИЕ В. Размеры сборки расходомера «ВЗЛЕТ ТЭР» с подающим и отводящим патрубками

^{* -} справочный размер

Рис.В.1. Вид сборки расходомера «ВЗЛЕТ ТЭР» с подающим и отводящим патрубками


Таблица В.1. Размеры сборки расходомера с патрубками

DN	I пп*, мм	I пу ₂ *, мм	I оп*, мм	L*, мм	I ппр*,	Н*, мм
32	160	96	164	530	200	290
40	200	120	201	605	200	300
50	250	150	250	705	200	315
65	325	195	327	860	200	325
80	400	240	395	1000	200	340
100	500	300	489	1245	250	370
150	750	450	727	1755	270	430
200	1000	600	973	2320	340	493
300	1500	900	1451	3455	500	607

Таблица В.2. Минимально возможная длина части сборки, выступающей внутрь колодца

DN	Длина, мм (справочный размер)
32	520
40	555
50	605
65	685
80	750
100	895
150	1155
200	1470
300	2105

^{1 –} подводящий патрубок; 2 – расходомер ВЗЛЕТ ТЭР; 3 – отводящий патрубок

^{* -} справочный размер

Рис.В.2. Вид сборки расходомера «ВЗЛЕТ ТЭР» с подающим и отводящим патрубками при наличии фланца на выпуске отводящего патрубка

Таблица В.3. Размеры сборки расходомера DN100 с подающим и отводящим патрубками при наличии фланца на выпуске отводящего патрубка

DN	I пп*, мм	I пу ₂ *, мм	I оп*, мм	L*, мм	I ппр*, мм	Н*, мм	Н к*, мм
100	500	300	623	1373	250	370	371

^{1 —} подводящий патрубок; 2 — расходомер ВЗЛЕТ ТЭР; 3 — отводящий патрубок с фланцем на выпуске

ПРИЛОЖЕНИЕ Г. Система меню и окон индикации блока ИВК-ТЭР исполнений ЭКОСТОК-11.1 и ЭКОСТОК-12.1 комплекса

Система меню и окон индикации комплекса, а также связей между ними приведена на рис. Г.1 - Г.7. Перечень обозначений, используемых в рисунках, приведен в табл.Г.1.

Таблица Г.1

Вид элемента	Назначение	
НАСТРОЙКИ	Наименование меню.	
Объем	Наименование пункта меню, команды или параметра.	
xxxx	Нередактируемое числовое значение параметра, либо редактирование производится в другом окне.	
	Поразрядно редактируемое числовое значения параметра.	
наименование	Значение параметра, устанавливаемое прибором. Надпись отображает смысловую суть параметра.	
	Значение параметра задается посредством его выбора из списка. Надпись в угловых скобках отображает смысловую суть или возможные значения параметра.	
H	Окно или опция меню (подменю) индицируется только в режиме НАСТРОЙКА.	
CH	Окно или опция меню (подменю) индицируется в режимах СЕРВИС и НАСТРОЙКА.	
Значок с обозначением режима отсутствует	Окно или опция меню (подменю) индицируется во всех режимах: РАБОТА, СЕРВИС, НАСТРОЙКА.	
н	Модификация параметра (параметров) возможна в режиме НАСТРОЙКА.	
СН	Модификация параметра (параметров) возможна в режимах СЕРВИС и НАСТРОЙКА.	
Значок с обозначением режима отсутствует	Модификация параметра (параметров) возможна во всех режимах: РАБОТА, СЕРВИС, НАСТРОЙКА.	
И	Окно укрупненной индикации	
ИВ	Окно укрупненной индикации и ввода значения параметра.	
•	Переход между окнами меню.	
← Рис. Г.1	Указатель перехода на другой рисунок.	

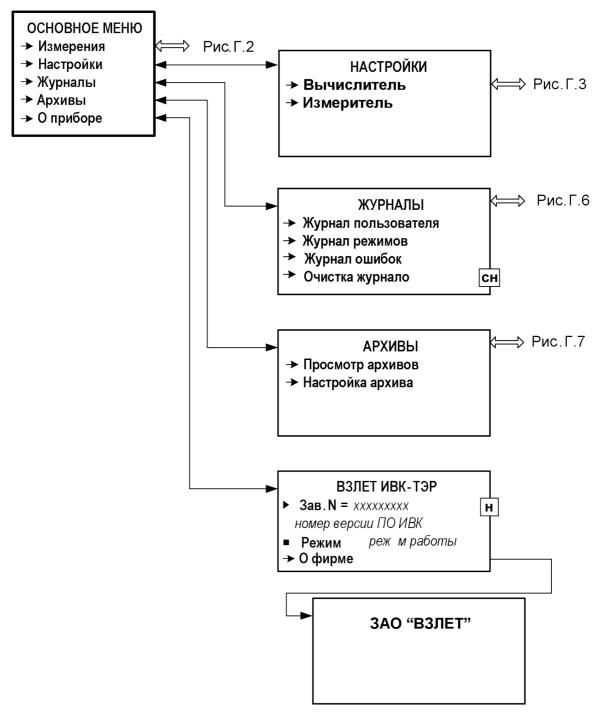


Рис. Г.1. Основное меню и меню верхнего уровня.

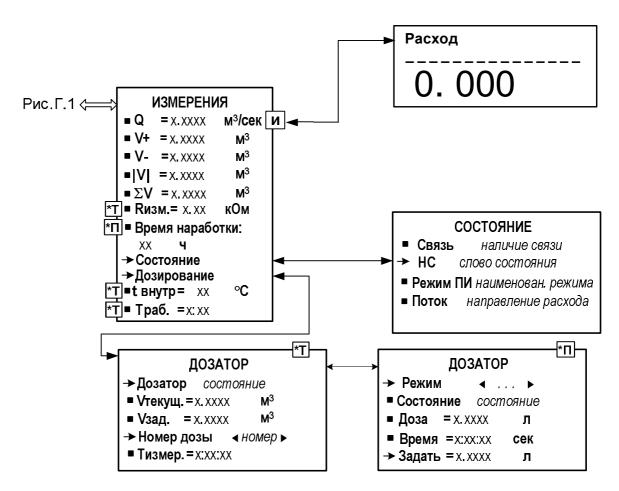


Рис. Г.2. Меню ИЗМЕРЕНИЯ и меню (окна) нижнего уровня.

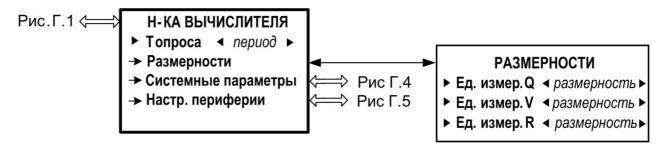


Рис. Г.3. Меню Н-КА ВЫЧИСЛИТЕЛЯ и меню нижнего уровня.

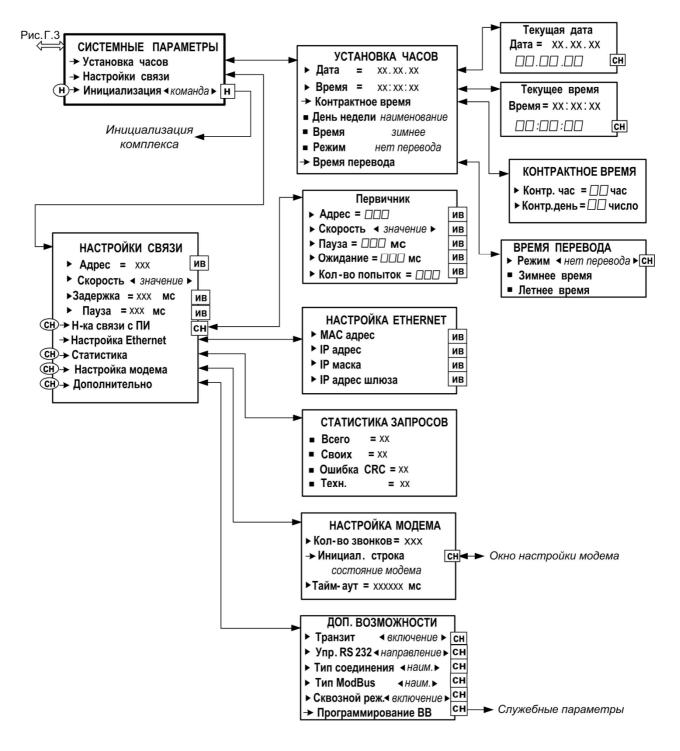


Рис. Г.4. Меню СИСТЕМНЫЕ ПАРАМЕТРЫ и меню (окна) нижнего уровня.

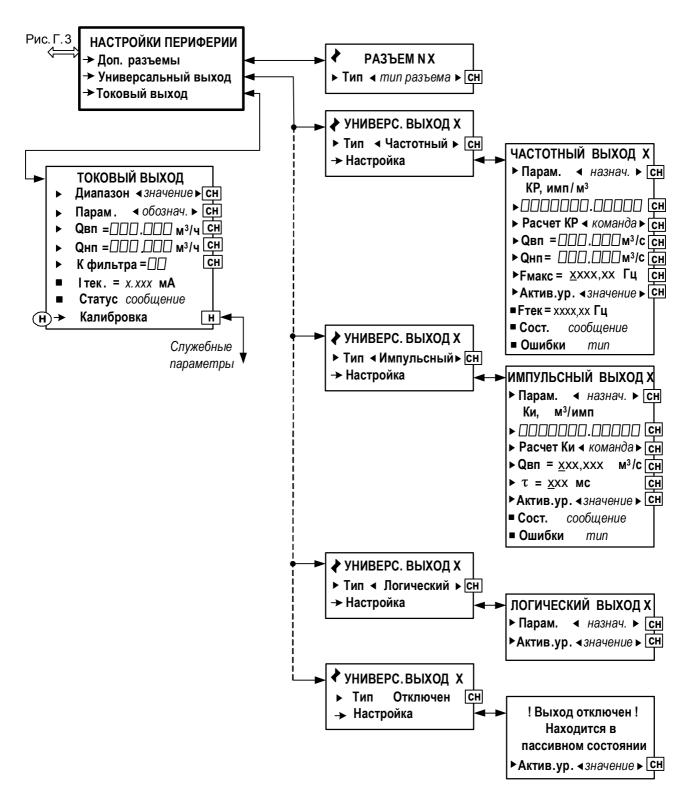


Рис. Г.5. Меню НАСТРОЙКИ ПЕРИФЕРИИ и меню (окна) нижнего уровня.

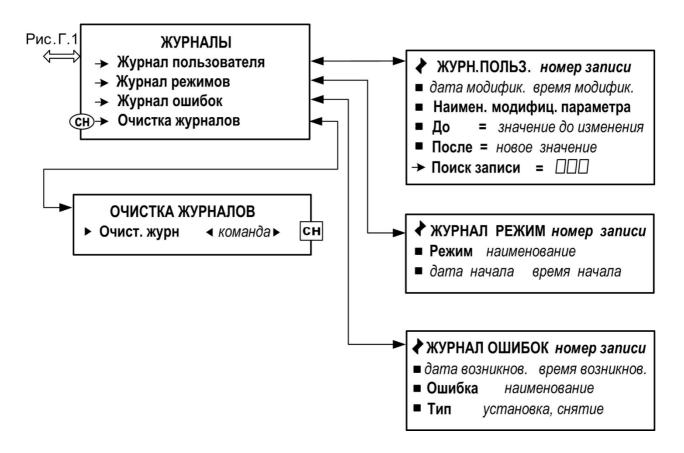


Рис. Г.6. Меню ЖУРНАЛЫ.

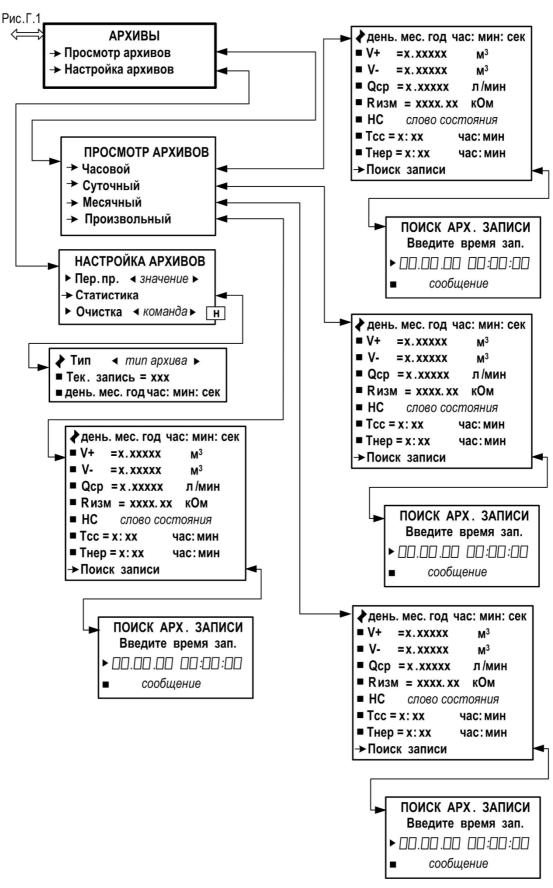


Рис. Г.7. Меню АРХИВЫ.

ПРИЛОЖЕНИЕ Д. Методика поверки МП 0597-1-2017

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт расходометрии»

Государственный научный метрологический центр ФГУП «ВНИИР»

ИНСТРУКЦИЯ

Государственная система обеспечения единства измерений КОМПЛЕКСЫ ИЗМЕРИТЕЛЬНО-ВЫЧИСЛИТЕЛЬНЫЕ «АЭФТ-ЭКОСТОК»

> Методика поверки МП 0597-1-2017

> > г. Казань

2017

Настоящая инструкция распространяется на комплексы измерительновычислительные «АЭФТ-ЭКОСТОК» (далее – комплексы), изготовляемые ООО «ТД «АЭфТ», предназначенные для измерений объема и объемного расхода жидкости, и устанавливает методику их первичной и периодической поверок.

Интервал между поверками – 4 года.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют следующие операции:

- внешний осмотр (п. 6.1);
- опробование (п. 6.2);
- определение метрологических характеристик комплекса (п. 6.3).

2 СРЕДСТВА ПОВЕРКИ

- 2.1 При поверке средств измерений, входящих в состав комплекса, должны применяться средства поверки в соответствии с методиками поверки, указанными в разделах «Поверка» описаний типа, являющихся обязательным приложением к свидетельствам об утверждения типа на данные средства измерений, или указанные в таблице 1 настоящего документа.
- 2.2 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.
- 2.3 Все эталоны, используемые в качестве средств поверки, должны быть аттестованы в установленном порядке.

3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 3.1 При проведении поверки должны соблюдаться требования:
- правил технической эксплуатации электроустановок потребителей;
- правил техники безопасности при эксплуатации электроустановок потребителей;
- правил безопасности при эксплуатации средств поверки, приведенных в их эксплуатационных документах.
 - инструкций по охране труда, действующих на объекте.
- 3.2 К работе по проведению поверки допускаются лица, изучившие настоящую инструкцию, эксплуатационные документы на комплексы и средства поверки, прошедшие инструктаж по технике безопасности на рабочем месте.
- 3.3 К средствам поверки и используемому при поверке оборудованию должен быть обеспечен свободный доступ.
- 3.4 Освещенность должна обеспечивать отчетливую видимость применяемых средств поверки, снятие показаний с приборов.
- 3.5 Перед началом поверки средств измерений, входящих в состав комплекса, необходимо выполнить требования безопасности в соответствии с методиками поверки, указанные в разделах «Поверка» описаний типа, являющихся обязательным приложением к свидетельствам об утверждения типа на данные средства измерений, или указанными в таблице 1 настоящего документа.

4 УСЛОВИЯ ПОВЕРКИ

- 4.1 При проведении поверки соблюдают следующие условия: окружающая среда воздух с параметрами:
- температура, °С20±5
- относительная влажность, % от 30 до 80атмосферное давление, кПа от 84 до 106,7
- 4.2 При поверке средств измерений, входящих в состав комплекса, соблюдают условия поверки в соответствии с методиками поверки, указанными в разделах «Поверка» описаний типа, являющихся обязательным приложением к свидетельствам об утверждения типа на данные средства измерений, или указанными в таблице 1 настоящего документа.
- 4.3 Периодическую поверку комплекса, применяемого для измерений в меньшем диапазоне расхода на основании письменного заявления владельца комплекса, оформленного в произвольной форме, допускается проводить в том диапазоне расхода, который определяет пригодность комплекса для применяемого диапазона расхода. Соответствующая запись должна быть сделана в свидетельстве о поверке комплекса.

5 ПОДГОТОВКА К ПОВЕРКЕ

- 5.1 При подготовке к поверке выполняют следующие работы:
- проверяют выполнение условий разделов п. 2 п. 4 настоящей инструкции;
- проверяют состояние и комплектность эксплуатационных документов;
- проверяют наличие действующего свидетельства об аттестации эталона, а также действующих свидетельств о поверке на средства измерений, являющимися средствами поверки, и (или) оттисков поверительных клейм;
- подготавливают к работе средства поверки в соответствии с их эксплуатационными документами.
- 5.2 Подготовка к поверке средств измерений, входящих в состав комплекса, проводиться в соответствии с их эксплуатационными документами.
- 5.3 При подготовке к поверке средств измерений, входящих в состав комплекса, должны быть выполнены работы в соответствии с методиками поверки, указанными в разделах «Поверка» описаний типа, являющихся обязательным приложением к свидетельствам об утверждения типа на данные средства измерений, или указанными в таблице 1 настоящего документа.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

При внешнем осмотре визуально определяют: комплектность и маркировку, отсутствие внешних механических повреждений, препятствующих чтению надписей и снятию показаний с комплекса, ухудшающих технические характеристики и влияющих на работоспособность комплекса.

Результаты проверки считаются положительными, если комплектность и маркировка соответствуют эксплуатационным документам, отсутствуют механические повреждения, препятствующие чтению надписей и снятию показаний с комплекса, ухудшающие технические характеристики и влияющие на работоспособность комплекса.

6.2 Опробование

Опробование комплекса проводят поэлементно в соответствии с методиками поверки на средства измерений, входящих в состав комплекса, указанных в разделе «поверка» описаний типа или указанных в таблице 1 настоящего документа.

Результат опробования считается положительным, если средства измерений, входящие в состав комплекса, удовлетворяют требованиям методики поверки, указанных в разделе «поверка» описаний типа средств измерений или указанных в таблице 1 настоящего документа.

6.3 Определение метрологических характеристик

Определение метрологических характеристик комплекса проводиться поэлементным способом.

6.3.1 Производят поверку средств измерений, входящих в состав комплекса, в соответствии с методиками поверки и интервалами между поверками, указанными в разделах «Поверка» описаний типа, являющихся обязательным приложением к свидетельству об утверждения типа на данные средства измерений (или указанными в таблице 1 настоящего документа), и в свидетельствах об утверждения типа на данные средства измерений соответственно.

Таблица 1 – Методики поверки на средства измерений, входящих в состав комплекса.

таолица т — методики поверки на средства измерении, входящих в состав комплекс			
Наименование средства измерений	Методика поверки		
Расходомеры-счетчики электромагнитные «ВЗЛЕТ ТЭР»	ШКСД 407212.002 РЭ «Расходомеры-счетчики электромагнитные «ВЗЛЕТ ТЭР». Руководство по эксплуатации», утверждено ГЦИ СИ ФГУП ВНИИР 30 октября 2013 г.		
Расходомеры-счетчики элек- тромагнитные SITRANS FM	МП 35024-07 «Расходомеры-счетчики электромагнит- ные SITRANS FM. Методика поверки», утверждена ГЦИ СИ ФГУП «ВНИИМС» 25 мая 2007 г.		
Расходомеры-счетчики элек- тромагнитные ВЗЛЕТ ЭР	В41.00-00.00 И1 «Инструкция. ГСИ. Расходомеры – счетчики электромагнитные «ВЗЛЕТ ЭР». Методика поверки», утверждена ГЦИ СИ ФГУП «ВНИИР» 13 августа 2004 г.		
Расходомеры-счетчики электромагнитные «ВЗЛЕТ ЭР» модификации «Лайт М»	ШКСД.407212.006 РЭ «Расходомеры-счетчики электромагнитные «ВЗЛЕТ ЭР» модификация «Лайт М». Руководство по эксплуатации», раздел «Методика поверки», утвержден ГЦИ СИ ФГУП «ВНИИР» 5 декабря 2012 г.		
Расходомеры-счетчики электромагнитные PCM-05	ЭС 99556332.012.000 МП «ГСИ. Расходомеры - счетчики электромагнитные РСМ-05 модификации РСМ-05.03(ТЭСМАРТ), РСМ-05.03 (ТЭСМАРТ-А), РСМ-05.05 (ТЭСМАРТ), РСМ-05.05 (ТЭСМАРТ-А), РСМ-05.07 (ТЭСМАРТ), РСМ-05.07 (ТЭСМАРТ-А), РСМ-05.05 (ТЭСМАРТ-П), РСМ-05.05 (ТЭСМАРТ-ПА), РСМ-05.05 (ТЭСМАРТ-Э). Методика поверки», утверждена ГЦИ СИ ОАО «НИИ Теплоприбор» 25 сентября 2013 г.		
Расходомеры-счетчики ультразвуковые «ВЗЛЕТ МР»	В12.00-00.00 РЭ «Расходомеры-счетчики ультразвуковые «ВЗЛЕТ МР». Руководство по эксплуатации» раздел 5 «Методика поверки», утверждено ГЦИ СИ ФГУП «ВНИИР» 10 октября 2014 г.		
Расходомеры-счетчики жид- кости ультразвуковые US800	«Расходомер-счетчик жидкости ультразвуковой US800. Руководство по эксплуатации US800.421364.001РЭ. Часть 1» раздел 4 «Поверка US800», утверждено ГЦИ СИ ФГУП «ВНИИР» 12.04.2006 г.		

Наименование средства измерений	Методика поверки
Комплексы измерительно- вычислительные «ВЗЛЕТ»	«Инструкция. ГСИ. Комплексы измерительновычислительные «ВЗЛЕТ». Методика поверки» В53.00-00.00 И1, утверждена ГЦИ СИ ФГУП «ВНИИР» 19 декабря 2011 года.
Тепловычислители СПТ941	РАЖГ.421412.031 РЭ «Тепловычислители СПТ941. Руководство по эксплуатации», утверждено ФГУП «ВНИИМС» в части раздела 11 «Методика поверки» 18.07.2014 г.
Тепловычислители «ВЗЛЕТ ТСРВ»	В84.00-00.00 РЭ «Тепловычислители «ВЗЛЕТ ТСРВ». Руководство по эксплуатации» раздел 4 «Методика поверки», утверждено ГЦИ СИ ФГУП ВНИИР 17 сентября 2013 г.

- 6.3.2 Расчет пределов допускаемой основной относительной погрешности комплек-
- 6.3.2.1 Расчет пределов допускаемой основной относительной погрешности комплекса (за исключением комплексов с исполнением ЭКОСТОК-41.1 или ЭКОСТОК-41.2, ЭКОСТОК-41.3, ЭКОСТОК-53.1, ЭКОСТОК-53.2, ЭКОСТОК-53.3) при измерении объема и объемного расхода в диапазоне расходов от переходного расхода (далее $Q_{\text{пер}}$) до наибольшего расхода (далее $Q_{\text{наиб}}$).

Расчет пределов допускаемой основной относительной погрешности комплекса при измерении объема и объемного расхода в диапазоне расходов от $Q_{\text{пер}}$ до $Q_{\text{наиб}}$ производят по формуле (1).

$$\delta_{\text{Koch.}} = \pm \sqrt{\delta_{\text{ПРосн.}}^2 + \delta_{\text{УИВ}}^2},\tag{1}$$

где $\delta_{\text{Косн.}}$ — пределы допускаемой основной относительной погрешности комплекса в диапазоне расходов от $Q_{\text{пер}}$ до $Q_{\text{наиб}}$, %.

 $\delta_{\mathsf{\Pi Poch.}}$ — пределы основной относительной погрешности ПР при измерении объема и объемного расхода жидкости в диапазоне расходов от $Q_{\mathsf{пер}}$ до $Q_{\mathsf{наиб}}$ (определяется в соответствии со свидетельством о поверке или паспортом и описанием типа ПР), %;

 буив
 пределы основной относительной погрешности УИВ при измерении (преобразовании) объема и объемного расхода жидкости при использовании импульсного/частотного или цифрового сигнала (определяется в соответствии со свидетельством о поверке или паспортом и описанием типа УИВ), %.

При применении в качестве УИВ тепловычислителей СПТ941 $\delta_{\text{УИВ}}$ определяется по формуле (2):

$$\delta_{\text{УИВ}} = \pm \sqrt{\delta_{\text{H}}^2 + \delta_{\text{II}}^2},\tag{2}$$

где $\delta_{_{\rm H}}$ — пределы допускаемой относительной погрешности при измерении сигналов частоты, %;

 $\delta_{\text{п}}$ — пределы допускаемой относительной погрешности при вычислении параметров, %.

Расчет значения по формуле (1) проводят до трех значащих цифр.

6.3.2.2. Пределы допускаемой основной относительной погрешности УИВ $\delta_{\text{УИВ}}$ при измерении (преобразовании) объема и объемного расхода жидкости комплексов исполнений

ЭКОСТОК-31, ЭКОСТОК-61, ЭКОСТОК-62, ЭКОСТОК-63, ЭКОСТОК-71, ЭКОСТОК-72, ЭКОСТОК-73, ЭКОСТОК-74 принимаются равными нулю.

6.3.2.3 Расчет пределов допускаемой основной относительной погрешности комплексов исполнений ЭКОСТОК-41.1, ЭКОСТОК-41.2, ЭКОСТОК-41.3, ЭКОСТОК-53.1, ЭКОСТОК-53.2, ЭКОСТОК-53.3 при измерении объема и объемного расхода в диапазоне расходов от наименьшего расхода (далее – $Q_{\text{наим}}$) до $Q_{\text{наиб}}$ производят по формуле (3):

$$\delta_{\text{Koch.}} = \pm \sqrt{\delta_{\text{ПРосн.}}^2 + \delta_{\text{УИВ}}^2},\tag{3}$$

где $\delta_{\text{Косн.}}$ — пределы допускаемой основной относительной погрешности комплекса в диапазоне расходов от $Q_{\text{наим}}$ до $Q_{\text{наим}}$, %;

 $\delta_{\mathsf{\Pi Poch.}}$ — пределы основной относительной погрешности ПР при измерении объема и объемного расхода жидкости в диапазоне расходов от $Q_{\mathsf{наим}}$ до $Q_{\mathsf{наиб}}$ (определяется в соответствии со свидетельством о поверке или паспортом и описанием типа ПР), %;

 буив
 пределы основной относительной погрешности УИВ при измерении (преобразовании) объема и объемного расхода жидкости при использовании импульсного/частотного или цифрового сигнала (определяется в соответствии со свидетельством о поверке или паспортом и описанием типа УИВ), %.

Расчет значения по формуле (3) проводят до трех значащих цифр.

6.3.3 Расчет пределов допускаемой основной приведенной погрешности исполнений комплекса в диапазоне расходов от $Q_{\text{наим}}$ до $Q_{\text{пер}}$.

6.3.3.1 Расчет пределов допускаемой основной приведенной погрешности комплексов исполнений ЭКОСТОК-11.1 – ЭКОСТОК-12.3 при измерении объема и объемного расхода жидкости в диапазоне расходов от $Q_{\text{наим}}$ до $Q_{\text{пер}}$ проводят при значении расхода $Q_{\text{пер}}$ по формуле (4):

$$\gamma_{\text{наим.}} = \pm \sqrt{\gamma_{\Pi P \pi e p}^2 + \delta_{\text{УИВ}}^2}, \tag{4}$$

где $\gamma_{\Pi P \pi e p}$ – пределы допускаемой основной приведенной погрешности ПР при измерении объема и объемного расхода в диапазоне расходов от $Q_{\text{наим}}$ до $Q_{\text{пер}}$, %;

Расчеты значений по формуле (4) проводят до трех значащих цифр.

6.3.3.2 Расчет пределов допускаемой основной приведенной погрешности исполнений комплексов ЭКОСТОК-21.1 – ЭКОСТОК-74 (за исключением комплексов с исполнением ЭКОСТОК-41.1 или ЭКОСТОК-41.2, ЭКОСТОК-41.3, ЭКОСТОК-53.1, ЭКОСТОК-53.2, ЭКОСТОК-53.3) при измерении объема и объемного расхода в диапазоне расходов от $Q_{\text{наим}}$ до $Q_{\text{пер}}$ проводят при значении расхода $Q_{\text{пер}}$ по формуле (5) и при значении расхода $Q_{\text{наим}}$ по формуле (6).

$$\gamma_{\text{nep.}} = \pm \sqrt{\delta_{\text{ПРпер.}}^2 + \delta_{\text{УИВ}}^2}, \tag{5}$$

где где пределы допускаемой основной приведенной погрешности комплекса при измерении объема и объемного расхода при значении расхода Q_{nep} , %;

 $\delta_{\text{ПРпер.}}$ – пределы основной относительной погрешности ПР при измерении объема и объемного расхода жидкости при значении расхода $Q_{\text{пер}}$

(определяется в соответствии со свидетельством о поверке или паспортом и описанием типа ПР), %.

$$\gamma_{\text{наим.}} = \frac{\pm \sqrt{\delta_{\Pi \text{Рнаим.}}^2 + \delta_{\text{УИВ}}^2} \cdot Q_{\text{наим}}}{Q_{\text{nen}}}, \tag{6}$$

где $\gamma_{\text{наим}}$

 пределы допускаемой основной приведенной погрешности комплекса при измерении объема и объемного расхода при значении

расхода Qнаим, %;

δпРнаим.

пределы основной относительной погрешности ПР при измерении объема и объемного расхода жидкости при значении расхода $Q_{\text{наим}}$ (определяется в соответствии со свидетельством о поверке или паспортом и описанием типа ПР), %.

Расчеты значений по формулам (5) и (6) проводят до трех значащих цифр.

- 6.3.3.3 Пределы основной относительной погрешности УИВ $\delta_{\text{УИВ}}$ при измерении (преобразовании) объема и объемного расхода жидкости комплексов исполнений ЭКОСТОК-31, ЭКОСТОК-61, ЭКОСТОК-62, ЭКОСТОК-63, ЭКОСТОК-71, ЭКОСТОК-72, ЭКОСТОК-73, ЭКОСТОК-74 принимаются равными нулю.
- 6.3.4 Комплекс считается прошедшим поверку, если пределы допускаемой основной относительной погрешности определенные по формулам (1) или (3) и пределы основной допускаемой приведенной погрешности определенные по формуле (4) или (5), (6) не превышают пределов, указанных в описании типа на комплекс.

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1 Результаты поверки, измерений и вычислений вносят в протокол поверки комплекса произвольной формы.
- 7.2 При положительных результатах поверки оформляют свидетельство о поверке комплекса в соответствии с приказом Минпромторга России от 2 июля 2015 г. № 1815 «Об утверждении порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», в паспорте делают отметку о дате очередной поверки. Наносят знак поверки на свидетельство о поверке комплекса.

На обратной стороне свидетельства о поверке комплекса указывают:

- заводские номера средств измерений, входящих в состав комплекса;
- номера и срок действия свидетельств о поверке средств измерений, входящих в состав комплекса.
- 7.3 При отрицательных результатах поверки комплекс к эксплуатации не допускают, свидетельство о поверке аннулируют и выдают «Извещение непригодности к применению» с указанием причин в соответствии с приказом Минпромторга России от 2 июля 2015 г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».