ФЕДЕРАЛЬНОЕ АГЕНТСТВО
ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО
об утверждении типа средств измерений

RU.C.29.004.A № 50641/1

Срок действия до 06 мая 2018 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ
Корректоры СПГ781

ИЗГОТОВИТЕЛЬ
Акционерное общество "Научно-производственная фирма "Логика" (АО НПФ ЛОГИКА), г. Санкт-Петербург

РЕГИСТРАЦИОННЫЙ № 36693-13

ДОКУМЕНТ НА ПОВЕРКУ
РАЖТ.421412.026 РЭ (раздел 9)

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 4 года

Свидетельство об утверждении типа переоформлено приказом Федерального агентства по техническому регулированию и метрологии от 07 июня 2017 г. № 1225

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя
Федерального агентства

С.С. Голубев

Серия СИ № 029653
Срок действия до 27 марта 2023 г.

Продлен приказом Федерального агентства по техническому регулированию и метрологии от 27 марта 2018 г. № 545

Заместитель Руководителя Федерального агентства

С.С. Голубев

2018 г.
ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ
(в редакции, утвержденной приказом Росстандарта № 1225 от 07.06.2017 г.)

Корректоры СПГ761

Назначение средства измерений
Корректоры СПГ761 предназначены для измерения электрических сигналов, соответствующих параметрам природного газа, транспортируемого по трубопроводам, и вычисления расхода и объема газа, приведенных к стандартным условиям.

Описание средства измерений
Принцип работы корректоров состоит в измерении входных электрических сигналов, поступающих от датчиков расхода или разности давлений на сужающих устройствах и усредняющих трубках, температуры, давления и других параметров газа, транспортируемого по трубопроводам, с последующим расчетом значений расхода и объема газа, приведенных к стандартным условиям (Те=20 °C, Ре=0,101325 МПа).

Корректоры обеспечивают обслуживание до двенадцати трубопроводов. Непосредственно к корректору могут быть подключены восемь датчиков с выходным сигналом тока, четыре с частотным или импульсным выходным сигналом и четыре с сигналом сопротивления, образуя конфигурацию входов 8I+4F+4R. Для модификации 761.2, посредством адаптеров АДС97, подключаемых по дополнительному интерфейсу RS485, конфигурация входов может быть расширена до 12I+8F+8R при подключении одного и до 16I+12F+12R при подключении двух адаптеров.

Выпускаются две модификации корректоров - 761.1 и 761.2. Модификация 761.2 отличается наличием дополнительного (второго) коммуникационного порта RS485. Общий вид и схема пломбирования корректоров приведены на рисунке 1.

Рисунок 1 - Общий вид и схема пломбирования (вид сзади)

Программное обеспечение
(ПО) корректоров встроеннное, неперезагружаемое при эксплуатации, имеющее метрологически значимую часть. ПО реализует вычислительные, диагностические и интерфейсные функции согласно эксплуатационной документации. Идентификационные данные ПО приведены в таблице 1. Уровень защиты ПО от непреднамеренных и преднамеренных изменений "высокий" по Р 50.2.077-2014.
Таблица 1 - Идентификационные данные ПО

<table>
<thead>
<tr>
<th>Идентификационные данные</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Идентификационное наименование</td>
<td>—</td>
</tr>
<tr>
<td>Номер версии (идентификационный номер) ПО</td>
<td>03.х.хх</td>
</tr>
<tr>
<td>Цифровой идентификатор (контрольная сумма)</td>
<td>D36A</td>
</tr>
</tbody>
</table>

Метрологические и технические характеристики

Диапазоны измерений сигналов тока, соответствующих давлению, разности давлений, температуре, расходу, плотности, удельной теплоте сгорания и относительной влажности, мА	от 0 до 5, от 0 до 20 и от 4 до 20
Диапазон измерений сигналов сопротивления, соответствующих температуре, Ом	от 39 до 143
Диапазон измерений частоты импульсных сигналов, соответствующих расходу, Гц	от 3·10^{-3} до 5·10^{3}
Диапазон показаний давления, МПа	от 0 до 30
Диапазон показаний разности давлений, кПа	от 0 до 100
Диапазон показаний температуры, °C	от -50 до +100
Диапазон показаний объемного расхода, м³/ч	от 0 до 9·10^{8}
Диапазон показаний массового расхода, кг/ч	от 0 до 9·10^{11}
Диапазон показаний объема, м³	от 0 до 9·10^{11}
Диапазон показаний массы, кг	от 0 до 9·10^{11}
Диапазон показаний плотности, кг/м³	от 0,5 до 150
Диапазон показаний удельной теплоты сгорания, МДж/м³	от 30 до 50
Диапазон показаний относительной влажности, %	от 0 до 100

Прегресс допускаемой, приведенной к диапазону, погрешности измерения объемного и массового расхода, давления, температуры, плотности, удельной теплоты сгорания и относительной влажности при входных сигналах тока, %:
- от 0 до 20 мА и от 4 до 20 мА |
- от 0 до 5 мА |

Пределы допускаемой, приведенной к диапазону, погрешности измерения разности давлений при применении преобразователей с пропорциональной характеристикой и входных сигналах тока, %:
- от 0 до 20 мА и от 4 до 20 мА |
- от 0 до 5 мА |

Пределы допускаемой, приведенной к диапазону, погрешности измерения разности давлений при применении преобразователей с квадратичной характеристикой и входных сигналах тока, %:
- от 0 до 20 мА и от 4 до 20 мА |
- от 0 до 5 мА |

Пределы допускаемой абсолютной погрешности измерения температуры при входных сигналах сопротивления и преобразователях температуры, °C:
- Pt100, 100П, 100М |
- Pt50, 50П, 50М |

±0,1 |
±0,15 |
Продолжение таблицы 2

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пределы допускаемой относительной погрешности измерения объемного и массового расхода при применении преобразователей с импульсным выходным сигналом, %</td>
<td>±0,05</td>
</tr>
<tr>
<td>Пределы допускаемой относительной погрешности хода часов, %</td>
<td>±0,01</td>
</tr>
<tr>
<td>Пределы допускаемой относительной погрешности вычисления параметров, %</td>
<td>±0,02</td>
</tr>
</tbody>
</table>

Таблица 3 - Технические характеристики

<table>
<thead>
<tr>
<th>Габаритные размеры, мм</th>
<th>244х220х70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Масса, кг, не более</td>
<td>2</td>
</tr>
<tr>
<td>Параметры электропитания:</td>
<td></td>
</tr>
<tr>
<td>- напряжение переменного тока, В</td>
<td>220 ±30%</td>
</tr>
<tr>
<td>- частота переменного тока, Гц</td>
<td>(50±1)</td>
</tr>
<tr>
<td>- потребляемая мощность, В·А</td>
<td>7</td>
</tr>
<tr>
<td>Условия эксплуатации:</td>
<td></td>
</tr>
<tr>
<td>- температура окружающего воздуха, °C</td>
<td>от -10 до +50</td>
</tr>
<tr>
<td>- относительная влажность при 35°C, %</td>
<td>95</td>
</tr>
<tr>
<td>- атмосферное давление, кПа</td>
<td>от 84 до 106,7</td>
</tr>
<tr>
<td>Средняя наработка на отказ, ч</td>
<td>75000</td>
</tr>
<tr>
<td>Средний срок службы, лет</td>
<td>12</td>
</tr>
</tbody>
</table>

Знак утверждения типа

наносится на лицевой панели корректора методом трафаретной печати и на первой странице эксплуатационных документов типографским способом.

Комплектность средства измерений

Таблица 4 - Комплектность средства измерений

<table>
<thead>
<tr>
<th>Наименование</th>
<th>Количество</th>
</tr>
</thead>
<tbody>
<tr>
<td>Корректор СПГ761.2 (.1)</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Штекер МС 1,5/2-ST-3,81</td>
<td>16 шт.</td>
</tr>
<tr>
<td>Штекер МС 1,5/4-ST-3,81</td>
<td>4 шт.</td>
</tr>
<tr>
<td>Штекер МС 1,5/5-ST-3,81</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Штекер MSTB 2,5/3-ST</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Заглушка кабельного ввода</td>
<td>7 шт.</td>
</tr>
<tr>
<td>Паспорт (РАЖТ.421412.026 ПС)</td>
<td>1 шт.</td>
</tr>
<tr>
<td>Руководство по эксплуатации с методикой поверки (РАЖГ.421412.026 РЭ)</td>
<td>1 шт.</td>
</tr>
</tbody>
</table>

Поверка

Основные средства поверки:

стенд СКС6, регистрационный № 17567-09 (абсолютная погрешность формирования сигналов тока ±0,003 мА, сигналов сопротивления ±0,015 Ом, относительная погрешность формирования сигналов частоты ±0,003 %).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на паспорт и (или) на свидетельство о поверке корректора.
Сведения о методиках (методах) измерений приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к коррекtorам СПГ761

ГОСТ 8.586.1-2005 ГСИ. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 1. Принципы метода измерений и общие требования
ГОСТ 8.586.2-2005 ГСИ. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 2. Диафрагмы. Технические требования
ГОСТ 8.586.3-2005 ГСИ. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 3. Сопла и сопла Вентури. Технические требования
ГОСТ 8.586.4-2005 ГСИ. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 4. Трубы Вентури. Технические требования
ГОСТ 8.586.5-2005 ГСИ. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 5. Методика выполнения измерений
ГОСТ Р 8.740-2011 ГСИ. Расход и количество газа. Методика измерений при помощи турбинных, ротационных и вихревых расходомеров и счетчиков
ГОСТ 30319.1-2015 Газ природный. Методы расчета физических свойств. Общие положения.
ГОСТ 30319.2-2015 Газ природный. Методы расчета физических свойств. Вычисление физических свойств на основе данных о плотности при стандартных условиях и содержании азота и диоксида углерода.
ГОСТ 30319.3-2015 Газ природный. Методы расчета физических свойств. Вычисление физических свойств на основе данных о компонентном составе
ТУ 4217-057-23041473-2007 Корректоры СПГ761. Технические условия

Изготовитель
Акционерное общество «Научно-производственная фирма «Логика» (АО НПФ ЛОГИКА)
ИНН 7809002893
Адрес: 190020, г. Санкт-Петербург, наб. Обводного канала, 150
Тел./факс: (812) 2522940, 4452745
Web-сайт: www.logika.spb.ru
E-mail: office@logika.spb.ru

Испытательный центр
Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ФГУП «ВНИИМС»)
Адрес: 119361, г. Москва, ул. Озерная, д.46
Тел./факс: (495)437-55-77 / 437-56-66
Web-сайт: www.vniims.ru
E-mail: office@vniims.ru

Заместитель
Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев
М.п. "19" 2017 г.