ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи расхода электромагнитные ПРЭМ

Назначение средства измерений

Преобразователи расхода электромагнитные ПРЭМ (далее - преобразователи) предназначены для измерений и преобразований в выходные электрические сигналы объемного расхода и объема электропроводящих жидкостей с удельной электропроводностью среды от 10^{-3} до $10~\mathrm{Cm/m}$.

Преобразователи применяются в составе теплосчетчиков и измерительных систем, предназначенных для измерений параметров теплоносителя в водяных системах теплопотребления, по ГОСТ Р 51649-2014.

Описание средства измерений

Принцип действия преобразователей основан на явлении индуцирования ЭДС в движущемся в магнитном поле проводнике — измеряемой среде.

Индуцируемая ЭДС, значение которой пропорционально расходу (скорости) измеряемой среды, воспринимается электродами и поступает на электронный блок преобразования, выполняющий обработку сигнала в соответствии с установленными алгоритмами.

Конструктивно преобразователи состоят из измерительного участка и электронного блока (ЭБ).

Измерительный участок представляет собой футерованный защитным материалом отрезок трубопровода из немагнитной стали, конструктивно выполненный во фланцевом или в бесфланцевом - типа «сэндвич» исполнениях. Измерительный участок заключен в кожух, защищающий элементы магнитной системы преобразователя.

Преобразователи имеют различные конструктивные исполнения (рис. 1), определяющие способы монтажа на трубопроводе.

а) Исполнение «сэндвич без защиты футеровки

б) Исполнение «сэндвич» с защитой футеровки

в) Фланцевое исполнение

Рисунок 1 – Общий вид конструктивных исполнений преобразователей

ЭБ преобразователей выполнен в герметичном корпусе и имеет различные конструктивные исполнения (рис. 2), обеспечивающих представление информации, как на внешние устройства, так и встроенный в ЭБ индикатор.

Сверху электронной платы установлена защитная крышка, обеспечивающая доступ к клеммникам и предотвращающая несанкционированное вмешательство в работу преобразователя.

Рисунок 2 - Общий вид конструктивных исполнений ЭБ с защитной крышкой

Для предотвращения несанкционированного вмешательства в работу преобразователя предусмотрены способы защиты, блокирующие изменение метрологических характеристик, внесение изменений в электронный модуль, отключение соединительных линий, демонтаж преобразователя.

Защита от изменения метрологических характеристик, от внесения изменений в электронный модуль, от отключения соединительных линий обеспечивается пломбированием по рисунку 3:

- изготовителем посредством нанесения оттиска клейма на мастике в углублении крышки защитной;
- поверителем посредством нанесения оттиска клейма на мастике в углублении крышки защитной;
- инспектором теплоснабжающей организации посредством нанесения оттиска клейма на навесной пломбе.

Рисунок 3 – Места пломбирования ЭБ

Преобразователи, в зависимости от их исполнения, обеспечивают следующие функциональные возможности:

- представление измерительной информации и результатов диагностики на внешние устройства посредством унифицированных выходных сигналов;
- визуализацию измерительной и сервисной информации посредством встроенного в ЭБ индикатора (опция по заказу, рис. 1в);
 - архивирование измерительной (сервисной) информации и результатов диагностики;
- регистрацию изменений настроечных параметров и калибровочных коэффициентов в фискальном архиве.

Преобразователи имеют следующие выходные сигналы:

- один или два импульсных сигнала, формируемых дискретным изменением сопротивления выходной цепи при прохождении через преобразователь (в одном или в двух направлениях потока) заданного объема измеряемой среды или при наличии диагностируемого события;
 - токовый сигнал в диапазоне тока (4-20) мА, пропорциональный измеренному расходу;

- цифровой сигнал обмена данными (интерфейс RS232, RS485), несущий информацию о результатах измерений и диагностики.

Преобразователи имеют различные метрологические классы, определяющие диапазоны преобразования расхода и объема, в которых нормированы пределы относительной погрешности при различных направлениях потока измеряемой среды.

Конструктивные исполнения (монтажной части, ЭБ, IP), метрологический класс, определяются при заказе преобразователей.

Программное обеспечение

Преобразователи имеют встроенное программное обеспечение (ПО). Основные функции частей программного обеспечения:

- 1) Блок расчета расхода предназначен для расчетов его значений по результатам измерений сигнала, формируемого на электродах преобразователя;
- 2) Блок расчета объема предназначен для расчетов его значений по результатам измерений расхода;
- 3) Блок архивации предназначен для расчетов и хранения измерительной и диагностической информации;
- 4) Блок обмена предназначен для вывода через последовательный порт измерительной, диагностической и настроечной информации на внешние устройства приема;
- 5) Блок индикации предназначен для визуального отображения на табло измерительной информации;
- 6) Блок реального времени предназначен для измерений времени работы и времени действия диагностируемых ситуаций;
- 7) Блок диагностики предназначен для контроля значений измеренных параметров на соответствие заданным значениям и формирования диагностических сообщений.

Идентификационные данные ПО (таблица 1) и уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений «высокий» по Р 50.2.077-2014.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значения		
Наименование ПО	ПРЭМ	Pult02-p	
Номер версии (идентификационный номер) ПО	23	-	
Цифровой идентификатор ПО	37B5	3c31c70bb9d1a55aca989a9722c8de42	
Алгоритм расчёта контрольных сумм	CRC-16	MD5	

Нормирование метрологических характеристик расходомера проведено с учетом влияния ΠO .

Метрологические и технические характеристики

Таблица 2 - Диаметры условных проходов (Ду) преобразователей и соответствующие им максимальные значения расходов

Ду	20	32	40	50	65	80	100	150
$Q_{\text{max}1}, M^3/q$	12	30	45	72	120	180	280	630
Q_{max2}^{1} , $M^{3}/4$	6,0	15	22,5	36	60	90	140	315
¹¹По заказу потребителя (соответствует скорости потока 5 м/с).								

Таблица 3 - Переходные $(Q_{t1},\,Q_{t2})$ и минимальные (Q_{min}) значения расходов, в зависимости от

метрологического класса преобразователей и направления потока измеряемой среды

Класс	Значения расхода при прямом направлении потока измеряемой среды			
Класс	Q_{\min}	Q_{t2}	Q_{t1}	
B1	$Q_{max1}/625$	$Q_{max1}/450$	$Q_{max1}/100$	
C1	$Q_{max1}/625$	$Q_{max1}/250$	$Q_{max1}/100$	
D	$Q_{max1}/375$	$Q_{max1}/150$	$Q_{max1}/100$	
Класс	Значения расхода п	ри обратном направлении потока		
Kilacc	Q_{\min}	Q_{t2}	Q_{t1}	
B1	$Q_{\text{max}1}/250$	$Q_{max1}/150$	$Q_{max1}/100$	
C1	$Q_{\text{max}1}/250$	$Q_{max1}/150$	$Q_{max1}/100$	
D	$Q_{max1}/375$	$Q_{max1}/150$	$Q_{max1}/100$	

Q_{max1} – максимальное значение расхода согласно таблице 2. Примечание – Численные значения расходов приведены в руководстве по эксплуатации.

Таблица 4 - Пределы допускаемой погрешности измерений/преобразований				
Измеряемые (преобразуемые) величины (измеренные значения)	Диапазон входного сигнала	Пределы допускае- мой погрешности, %	Примечание	
Обламиній расуол н	в диапазоне измерений расхода от Q_{t1} до Q_{max}	±1		
Объемный расход и объем (при представлении на табло и посредством импульсного и цифрового сигналов)	в диапазоне измерений расхода от Q_{t2} до Q_{t1}	±2	Относительная погрешность	
	в диапазоне измерений расхода от Q_{min} до Q_{t2} .	±5		
Преобразование измеренных значений расхода в сигнал постоянного тока	при сопротив- лении нагруз- ки не более 500 Ом	±0,2	Приведенная к верхнему пределу измерений расхода погрешность	
Время	-	±0,05	Относительная погрешность	

Таблица 5 - Габаритные размеры и масса преобразователей в зависимости от конструктивного исполнения

	Исполнение «сэндвич»		Исполнение фланцевое		
Ду	Габаритные размеры, не более (длина; ширина; высота), мм	Масса, кг, не более	Габаритные размеры, мм не более (длина; ширина; высота),	Масса, кг, не более	
20**	115; 60; 163	1,4	155; 105; 185	3,2	
32*	128; 96; 198	2,7	200; 135; 205	4,7	
40	-	-	200; 145; 225	6,1	
50*	153; 114; 222	3,7	200; 160; 235	7,2	
65	-	-	200; 180; 275	10,7	
80**	186; 140; 246	7,0	200; 195; 275	14,5	
100**	217; 160; 260	9,3	-	-	
150	-	-	314; 280; 325	28,6	
* - с защитой футеровки; ** - без защиты футеровки					

Таблица 6 - Основные технические характеристики преобразователей

Наименование характеристики	Значение
Напряжение питание от источника постоянного тока, В.	от 11,5 до 12,5
Потребляемая мощность, В.А, не более	5
Средняя наработка на отказ, ч	80000
Средний срок службы, лет	12
Гидравлическая прочность, МПа	2,5
Степень защиты корпуса по ГОСТ 14254-2015	IP65*
* - по заказу IP68	

Таблица 7 - Условия эксплуатации преобразователей

Наименование характеристики	Значение
Диапазон температур окружающего воздуха,°С	от -10 до +50
Диапазон температур измеряемой среды, °С	от 0 до +150
Относительная влажность воздуха при температуре 35 °C, %, не более	95
Атмосферное давление, кПа	от 84 до 106,7
Переменное магнитное поле частотой 50 Гц, А/м, не более	40
Давление измеряемой среды, МПа, не более	1,6

Знак утверждения типа

наносится на лицевую панель преобразователей методом шелкографии и титульный лист эксплуатационной документации типографским способом.

Комплектность средства измерений

Таблица 8 – Комплектность преобразователей

Наименование	Обозначение	Кол-во	Примечание
Преобразователь расхода элек-	ПРЭМ	1	Исполнение
тромагнитный			согласно заказу
Руководство по эксплуатации	ТНРВ.407111.039 РЭ	1	
Паспорт	ТНРВ.407111.039 ПС	1	
Методика поверки	ТНРВ.407111.039 Д5	1 экз.	при групповой поставке
Клеммник		1 к-т	Количество согласно ис-
КЛЕММНИК	-	1 K-1	полнению
Блок питания		1	Тип по наличию на момент
рлок питания	-	1	поставки

Поверка

осуществляется по документу ТНРВ.407111.039 Д5 «ГСИ. Преобразователи расхода электромагнитные ПРЭМ. Методика поверки», утвержденному ФГУП «ВНИИМ им. Д.И. Менделеева» 3 июня 2019 г.

Основные средства поверки:

- установка расходомерная УМР-1 (регистрационный номер в Федеральном информационном фонде 31395-06). Диапазон воспроизведений расхода воды от 0,01 до 360 м 3 /ч, относительная погрешность \pm 0,05 %;
- вольтметр универсальный цифровой B7-38 (регистрационный номер в Федеральном информационном фонде 8730-82). Диапазон измерений напряжения постоянного тока от 0 до 2 B, класс точности 0.04/0.02;
- магазин сопротивлений Р4831 (регистрационный номер в Федеральном информационном фонде 38510-08), класс точности 0,02, сопротивление 100 Ом.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится в углубление крышки защитной (рис.3) и (или) на свидетельство о поверке или в паспорт.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к преобразователям расхода электромагнитным ПРЭМ

ТУ 26.51.52-039-28692086-2018 Преобразователи расхода электромагнитные ПРЭМ. Технические условия

Приказ Росстандарта от 07.02.2018 № 256 Об утверждении Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях, массового и объемного расхода жидкости

Технический регламент Таможенного Союза ТР ТС 020/2011 «Электромагнитная совместимость технических средств»

Технический регламент Таможенного Союза ТР ТС 004/2011 «О безопасности низковольтного оборудования»

Изготовитель

Общество с ограниченной ответственностью «ИВТрейд» (ООО «ИВТрейд»)

ИНН 7842153762

Адрес: 197348, г. Санкт-Петербург, Коломяжский пр-т, дом 10, лит. АФ.

Телефон: 8 800 250-03-03, (812) 600-03-03

Web-сайт: <u>www.teplocom-sale.ru</u> E-mail: <u>info@teplocom-sale.ru</u>

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева»

Адрес: 190005, Санкт-Петербург, Московский пр., 19 Телефон: (812) 251-76-01, факс: (812) 713-01-14

Web-сайт: <u>www.vniim.ru</u> E-mail: info@vniim.ru

Регистрационный номер RA.RU.311541 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

М.п. « » 2019 г.